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Abstract

Unsupervised domain adaptation (UDA) is a machine learning
approach designed to minimize reliance on labeled data by
aligning features between a labeled source domain and an un-
labeled target domain, thereby reducing feature discrepancies,
which is efficient for multivariate time series (MTS) prediction.
However, most MTS UDA methods focus solely on aligning
intra-series temporal features, overlooking the valuable infor-
mation in inter-series dependencies. Research has highlighted
that analyzing decomposed frequency dependencies in time
series can reveal significant trends, noise patterns, and intri-
cate temporal details. To address these unexplored frequency
dependencies, we introduce the Frequency Graph Discovery
Module (FGD), which uncovers and aligns shared frequency
information and correlations across domains. Additionally,
we propose a Frequency-Contextual Contrastive Learning
(FCCL) framework to better capture and align frequency-
contextual representations in multivariate time series, ensur-
ing the extraction of label-invariant information for predic-
tion. Furthermore, considering existing models overlooking
the valuable and abundant information outside source and
target dataset, we enhance the MTS UDA prediction model
with a Language-guided Adversary Alignment (LAA) module,
which leverages the advancement and capabilities of Large
Language Models (LLMs) to get text-encoded labeled embed-
dings and align the classification features, thereby improving
prediction accuracy. Our model achieves state-of-the-art re-
sults on three public multivariate time-series datasets for un-
supervised domain adaptation, as demonstrated by empirical
results.

1 Introduction
Multivariate Time Series (MTS) data are extensively applied
and researched across various fields. The advancement of
data-driven models, particularly deep learning methods, has
significantly improved performance in MTS-related tasks
due to their ability to model latent dependencies within
data (Ragab et al. 2023). However, these methods often re-
quire a large amount of labeled data for training, which can
be costly and sometimes even impossible, such as forcing
every single patient to record and submit their daily activity
sensor data and label with their specific activities and training
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individual models for every particular patient. Targeting this
bottleneck, Unsupervised Domain Adaptation (UDA) meth-
ods have emerged. These methods transfer knowledge from a
labeled source domain to an unlabeled target domain without
using labels from the target domain (Wang et al. 2023).

Most of the current UDA methods attempt to reduce do-
main discrepancy by learning domain-invariant features, typ-
ically through metric-based, such as Recurrent Neural Net-
works (RNNs) (Purushotham et al. 2022a) and Long Short-
Term Memory (LSTM) (da Costa et al. 2020) or adversarial-
based approaches, such as domain adversarial neural network
(DANN) (Ganin et al. 2016) and CALDA (Wilson, Doppa,
and Cook 2023). These methods have proven effective in re-
ducing label dependency, particularly in tasks involving MTS
data. Additionally, transfer learning has emerged as another
prominent approach in time series analysis, integrating Con-
trastive Learning (CL) to capture contextual representations
for downstream tasks (Eldele et al. 2021; Tonekaboni, Eytan,
and Goldenberg 2021). In the UDA task, CLUDA (Ozyurt,
Feuerriegel, and Zhang 2022) has shown promise by leverag-
ing CL to align contextual representations across source and
target domains.

Despite advancements, existing MTS UDA methods pri-
marily align features within the intra-series temporal sig-
nal space, neglecting inter-series dependencies and multi-
frequency information. Domain shifts in time series can man-
ifest as changes in temporal and frequency characteristics,
where frequency features are more robust to small shifts and
noise, offering better trend and turbulence extraction (He et al.
2023; Guo et al. 2024). Motivated by this, we hypothesize that
frequency features and inter-frequency correlations between
source and target domains should exhibit similarity. To lever-
age this, we propose the Frequency Graph Discovery Module
(FGD), which identifies inherent frequency relationships and
aligns features at the frequency graph level. Complement-
ing this, we introduce the Frequency-Contextual Contrastive
Learning (FCCL) framework to align frequency-contextual
representations from augmented time series, extracting label-
invariant information. Together with adversarial training to
reduce domain discrepancies, our proposed model, ConFGD,
integrates FGD and FCCL to enhance prediction accuracy.

Existing models extract features only from source and tar-
get data, overlooking abundant information outside. In line
with the saying, “those who wanted to learn would seek out a



teacher, one who could propagate the doctrine, impart profes-
sional knowledge, and resolve doubt”, we see large language
models (LLMs) as this teacher, offering vast knowledge from
books, articles, and other sources. The advancement and ca-
pabilities of LLMs inspired us to explore extending their po-
tential to guide our MTS UDA task. Since dataset labels can
serve as inherent prompts for generating LLM embeddings,
we designed a time-efficient and computationally lightweight
adversary module, Language-guided Adversary Alignment
(LAA) module, that can be added not only to our ConFGD
model but also to existing UDA models to improve the predic-
tion ability and the upgraded model is denoted as ConFGD+.

We evaluate our method on the benchmark real-world MTS
dataset HAR (Anguita et al. 2013), WISDM (Kwapisz, Weiss,
and Moore 2011) and HHAR (Stisen et al. 2015), and achieve
state-of-the-art (SOTA) performances. We further conduct
experiments by introducing the LAA module to ConFGD
and other existing models, such as CLUDA, to confirm its
effectiveness and superior performance.
Contributions:
1. We propose and develop a novel Frequency Graph Dis-

covery Module (FGD) to discover and align the inherent
inter-series frequency channels information and relation-
ship for Unsupervised Domain Adaptation (UDA) of time
series.

2. To incorporate with the frequency embeddings, we cap-
ture the frequency-contextual representation by the novel
design of a brand new Frequency-Contextual Contrastive
Learning (FCCL) framework and further enhance the pre-
diction capabilities by extracting the label-invariant infor-
mation.

3. We are the first to introduce the LLM as a time-efficient
and computationally lightweight adversarial language-
guided model, which can be incorporated into not only
our ConFGD model but also existing UDA models to
enhance prediction performance.

2 Methodology
2.1 Problem Formulation
In this paper, the objective is to perform UDA on the
multivariate time series classification tasks. There are two
datasets sampled from two different distributions respec-
tively which are given as Dsrc = {(Xi

src, y
i
src)}

Ns
i=1 and

Dtrg = {Xi
trg}

Nt
i=1. Dsrc represents the labeled source

domain dataset with Ns number of samples. Xi
src =

{xit
src}Tt=1 ∈ RD×T is a sample of the source domain with

T time steps and D sensor observations and yisrc is the label
for the given sample. Dtrg represents the unlabeled target
domain dataset with Nt number of samples. Similar as the
samples from Dsrc, the sample from the target domain is
Xi

trg = {xit
trg}Tt=1 ∈ RD×T . In addition, the labels for the

target domain are applicable during testing, therefore we
specifically define the labeled testing target domain dataset
as Dtest

trg = {(Xi
test trg, y

i
test trg)}

Ntest
t

i=1 where N test
t is the

number of samples in the test target domain dataset and
Xi

test trg = {xit
test trg}Tt=1 ∈ RD×T . The same for both

source and target domain samples, xit = {xitd}Dd=1 ∈ RD.
Although the source and target domains are drawn from dif-
ferent distributions, each representing distinct marginal dis-
tributions, the conditional distributions for both domains are
identical. We assume the two domains share the same label
space. The main goal of this work is to minimize the distribu-
tion shift between the source and target domains and achieve
good generalization on the target domain Dtrg by exploiting
the labeled source domain samples.

2.2 Architecture Overview
The framework of our proposed ConFGD for multivariate
time series unsupervised domain adaptation is shown in
Fig. 1. First of all, both augmented time series from both
domains are decomposed into multi-frequency level signals
by implementing Discrete Wavelet Transform (DWT), and
the corresponding features, Hsrc and Htrg , are extracted by
the temporal projection network respectively. After that, the
frequency graph discovery module (FGD) comprising the
encoder, aggregate module, and decoder, is trained to capture
and align the graph, including both edge and node attributes,
across various frequency levels. The classification feature
vS
node extracted from Hsrc by the graph discovery encoder

is utilized to predict the label ysrc of time series Xsrc. The
domain discrimination is trained to distinguish domains by
utilizing in the encoder node embeddings vS

node and vT
node.

We arbitrarily labeled the source domain as 0 and the target
domain as 1 for the training. To enhance the capture of con-
textual representations, frequency-contextual contrastive
learning (FCCL) is employed across each domain through
the utilization of a momentum-updated temporal projec-
tion and encoder. The ConFGD+ introduces an Language-
Guided Alignment (LAA) module which is shown in Fig. 2
to align the embeddings gotten from label prompts with the
classification features vS

node. This is explained in Sec. 2.5.

2.3 Frequency Graph Discovery Module
The information from time series signals is equally important
in both the time and frequency domain. Signals in the time
domain are vulnerable to noise and disruptions, making it
challenging to discern trends and detailed information due
to their volatility. In contrast, frequency-domain methods
transform these signals to emphasize their spectral features,
making it easier and more feasible to extract and recognize
turbulence and trends. Higher frequency components usually
include finer details and generally suggest random variations
and noise. The lower frequency components usually offer
insights into trend dynamics and more stable dependencies.
Therefore, we hypothesize that if the source and target do-
mains share the same label space, the information shared
by the frequency channels and the correlation among the
multi-frequency level signals should be similar.

DWT Frequency Decomposed Fourier Transform and
Wavelet Transform are two prevailing methods for transform-
ing signals between the time and frequency domain. Com-
pared with Wavelet Transform, Fourier Transform mostly
focuses on the overall dependencies of the time domain such
as global seasonal and temporal information (Karlton 2020).
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Figure 1: ConFGD Model Architecture (Best view in color). The left side graph is the overall structure. The source and target
samples are augmented to be the query Xq and the key Xk and are decomposed by the DWT. After that, they are passed to the
temporal projection layer and graph discovery encoder to get the encoder node and edge embeddings where the source node
embedding v

Sq

node is utilized for prediction (Lpred). Next, the aggregate modules (detailed structure shown in the lower right
corner) integrate the query node and edge embeddings respectively, along with their positional encodings. These combined
embeddings are then passed to the graph discovery decoder to obtain the frequency correlation graph for LFC , LFF and LCL.
The domain discrimination framework (Ldomain) is in the upper right corner.

Even though the windowed Fourier Transform technique
is optimized to capture the local feature, it is restricted by
the constant window to manage the input shorter or longer
than the window (Gabor 1946). Consequently, the Wavelet
Transform is selected for frequency decomposition due to
its scaled window, which addresses the limitation of incon-
sistent input lengths and enables the capture of local prop-
erties. More specifically, we employ the Discrete Wavelet
Transform (DWT) in feature-wise. The decompose imple-
mentation is denoted as DWT (·) which can be illustrated
as X̃coeff = DWT (X). X̃coeff is the concatenate coeffi-
cients of all the levels gotten by DWT. There is a number of
S sets of coefficients within X̃coeff . To simply extract the
low and high-frequency part of the time series, we multiply
each set of coefficients X̃coeff [s] with a parameter λs. The
low-frequency parameter λlf

s exhibits a small value at high
levels, i.e., when s is small, conversely for the high-frequency
parameter λhf

s . This can be denoted as

X̃lf
coeff [s], X̃

hf
coeff [s] = λlf

s X̃coeff [s], λ
hf
s X̃coeff [s]. (1)

Then, the filtered high- and low-frequency coefficient sets
would be inverse back to the time domain by implementing
the Inverse Discrete Wavelet Transform (IDWT),

X =Concat({IDWT (X̃hf
coeff [s]}

S
s=1),

X =Concat(IDWT ({X̃lf
coeff [s])}

S
s=1),

X̃ =Concat(X,X), {X,X} ∈ RD×T×S , X̃ ∈ RD×T×2S

(2)
where the Concat is a concatenate implementation along the
frequency channel and X and X represent the decomposed

high-frequency and low-frequency time series for each fea-
ture and X̃ is the integration of the multi-frequency levels.
Motivated by SASA (Cai et al. 2021), we allocate indepen-
dent temporal projection layers for each frequency chan-
nel, H = Concat({T [s](X̃[s])}2Ss=1), where T [s] is the in-
dependent temporal projection layer for each channel, and
H ∈ R2S×P is the hidden representation and P is the hidden
dimension of each T [s].

Graph Discovery Module The objective of the graph dis-
covery module is to find the intrinsic relationship among
the frequency channels. The interaction among the frequency
channels is modeled as a frequency correlation graph G which
contains the edge and node information. The graph includes
self-loop which means each node also points to itself. In-
spired by the graph discovery architecture in the VCDN (Li
et al. 2020), our Graph Discovery Module utilizes graph
neural networks (see Appendix. C) as the encoder and de-
coder, further integrating an aggregation module between the
encoder and decoder to capture the frequency channel and
spatial channel information.

To simplify the notation, we let Q represent 2S in the pre-
vious chapter. The fully connected graph encoder is denoted
as Genc(·), and the process can be described as

vnode,vedge = Genc(H),vnode ∈ RQ×P ,vedge ∈ RQ2×P

(3)
where the vnode,vedge are denoted as the encoder node and
edge embedding respectively.

The encoder node embedding vnode is also the classifi-
cation feature that is utilized for the prediction. We define
the prediction head as Pred(·) and the prediction loss is



expressed as

ŷisrc = Pred(vSi
node), Lpred =

1

Ns

Ns∑
i=1

Lce(ŷ
i
src, y

i
src),

(4)
where the Lce is the cross-entropy loss.

Besides, the encoder node embedding vnode is also used
to align the domain distributions. We introduce adversarial
learning (Ganin et al. 2016), to enhance the indistinguisha-
bility of the domain discriminator Ddisc(·). This encourages
the model to classify both domains as the same class. To
achieve this, the gradients of vS

node and vT
node are reversed

by the gradient reversal layer F (·). This layer is designed
to train Genc(·) to maximize the domain classification loss,
which is minimized during the training of Ddisc(·). The gra-
dient reverse process is defined as F (x) = x, dF

dx = −I.
The pseudo domain labels are defined as dsrc and dtrg, the
domain classification loss can be written as

Ldomain =
1

Ns

Ns∑
i=1

Lce(Ddisc(R(vSi
node)), dsrc)

+
1

Nt

Nt∑
i=1

Lce(Ddisc(R(vTi
node)), dtrg)

(5)

Next, we implement vedge = Top k(vedge) to take the
top k important edge embeddings of each node to reduce the
computational burden and the disturbance of the relatively
irrelevant edge information and set the discarded feature into
zeros. Then, the 1D frequency positional encoding and 2D
frequency positional encoding is added to the node and edge
embeddings respectively (See Appendix B).

To aggregate the encoder features (vedge and vnode) with
their positional encoding and integrate both frequency and
spatial information, we introduce the aggregate module. We
utilize max pooling to capture the most prominent features
and introduce average pooling to obtain smooth global in-
formation. By integrating these two pooling strategies, the
module functions like residual layers, effectively capturing
features from both frequency and spatial channels while pre-
venting gradient vanishing. Additionally, to manage compu-
tational complexity, we include only one learnable layer at
the end of this module, ensuring it remains lightweight and
does not add significant computational overhead. The overall
flow is denoted as below,
v′ = v ⊗ σ(AP (v) +MP (v)),

w = v′T ⊗ σ(BN(Conv(AP (v′T )⊕MP (v′T )))),
(6)

where ⊗ is the feature-wise multiplication, ⊕ is the concate-
nation of two matrices, σ is the sigmoid activation function.
The AP and MP are average pooling and max pooling. Due to
the dimension for vedge and vnode being different, in Fig. 1,
we use M and P to imply the dimension would remain the
same after the aggregation. Then, the aggregate feature are
denoted as wnode ∈ RQ×P and wedge ∈ RQ2×P . After get-
ting the aggregate features, a parameterized decoder Gdec(·)
is applied to take in both the node and edge aggregated infor-
mation to build up the frequency correlation graph

G ∼ {gnode,gedge} = Gdec(wnode,wedge), (7)

where gnode ∈ RQ×P is the node correlation projection and
gedge ∈ RQ2×1 is the edge correlation projection. The gnode

is used for calculating the frequency feature-wise loss (LFF )
and gedge is used for calculating the frequency contrastive
loss (LFC). The LFF is to calculate the expectation of the
discrepancy among the frequency graph over feature-wise be-
tween domains and the LFC is to align the frequency features
correlations where we assume the correlation between the
same set of frequency pairs should have similar distribution
and properties, and the features from the different frequency
pairs should be different. These two losses are denoted as

LFF = E(|gS
node − gT

node|),

LFC = − 1

Q

Q∑
i=1

log
eg

Si
edge(g

Ti
edge)

T∑Q
j=1,j ̸=i e

gSi
edge(g

Tj
edge)

.
(8)

where the i and j are the frequency level vector in the edge
correlation projection.

2.4 Frequency-Contextual Contrastive Learning
Contrastive learning (CL) has been widely proven to learn
and capture contextual representation effectively in various
unsupervised representation learning scenarios (Wu et al.
2024; Eldele et al. 2021) ; see related work (Appendix A). In
the CLUDA (Ozyurt, Feuerriegel, and Zhang 2022), CL has
been demonstrated to be efficient in capturing and aligning
the contextual representation of multivariate time series data
which preserves the label invariant information and makes
the domain alignment and prediction tasks easier. To enhance
the existing FGD module, we propose the FCCL approach.
This method is designed to align the frequency-contextual
information from two augmented views of the same sample
and distinguish it from the frequency-contextual information
from other samples.

The overall FCCL framework is shown in Fig. 1. Moti-
vated by MoCo (He et al. 2019), we implement the CL with
the momentum contrast technique. In addition, the semantic-
preserving augmentation strategy is utilized to get two aug-
mentations for each sample as the key Xk and query Xq

respectively where Xq,Xk ∈ RD×T . Both would undergo
decomposition into multiple frequency channels using DWT
following with as Sec. 2.3, {Xq,Xk} → {X̃q, X̃k}. The X̃q

and X̃k are passed to the temporal projection layer T (·) and
T̃ (·) to get the frequency embeddings Hq and Hk respec-
tively. After that, according to Eqn. 3, frequency embeddings
Hq and Hk are processed by the graph discovery encoder
Genc(·) and G̃enc(·) to get their encoder node embeddings
vq
node and vk

node. The weights of T̃ (·) and G̃enc(·) are mo-
mentum updated via

{θT̃ , θG̃enc} ← α{θT̃ , θG̃enc}+ (1− α){θT , θGenc}, (9)

α ∈ [1, 0) is the momentum coefficient to update the weights.
To avoid model collapse, where the query and key networks
might converge to trivial or identical representations, the
query encoder node embeddings are passed through Gdec(·)
to obtain the node correlation projection gq

node. The ob-
jective of FCCL is to bring gqi

node closer to its positive
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Figure 2: Language-guided Adversary Alignment (LAA).

sample, i.e., vki
node, but further to its negative samples in

Queue← {vkj
node}Jj=1 where J is the queue size of the large

set of negative pairs collected from previous batch(J ≫ B,
J%B = 0, B is the batch size), which is efficient to capture
better frequency-contextual representations (Ozyurt, Feuer-
riegel, and Zhang 2022). The contrastive loss LCL is denoted
as

− 1

B

B∑
i=1

log
eg

qi
node(v

ki
node)

T /τ

eg
qi
node(v

ki
node)

T /τ +
∑J

j=1 e
gqi
node(v

kj
node)

T /τ
.

(10)
The τ is the temperature scale which is larger than 0. The
source and target domains’ contrastive losses are denoted
as LS

CL and LT
CL respectively, and the queues for them are

denoted as Queuesrc and Queuetrg .

2.5 ConFGD+: Language-guided Adversary
Alignment

The ConFGD+ framework extends our proposed ConFGD
framework with a Language-guided Adversary Alignment
(LAA) module, as illustrated in Fig. 2, to improve the pre-
diction accuracy by aligning the classification feature vS

node
with the label embeddings guided by the pre-trained LLM
text encoder. Th LAA can also be added to other MTS UDA
model.

Given the large number of parameters in LLM, obtaining
embeddings from label prompts can slow down inference.
Instead of directly integrating the LLM into the model and
extracting features for each sample during training, we store
all label embeddings in a dictionary Dict before training
starts,

Eb = LLM(LP ),Dict← {Datasetname, y
i
src, LP,Eb}

(11)
where the LP is the label prompts, i.e., the text label of the
ground true yisrc, and the Datasetname stored in the Dict is
convenient to find the exact set of labels during loading data.
Therefore, the dictionary only needs to be built once which
is very time-saving and computationally efficient.

During the model training, the way to get embeddings
is similar to looking up the dictionary where the index
is [Datasetname, y

i
src] for each sample. Then, the source

dataset Dsrc is denoted as D+
src = {([Xi

src,Ebi], yisrc)}
Ns
i=1.

As the dimension of Eb is high, we adopt the approach out-
lined in (OpenAI 2024) to reduce its dimension to match that

of the flattened v
Sq

node ∈ R1×QP by Eb′ = Eb[: Q× P ] ∈
R1×QP .

Considering the base of Eb′ and the classification feature
vS
node are not consistent, the Eb′ is multiplied by a learnable

identity matrix WI to slightly align their basement. The
language-guided alignment loss is expressed as

Lllm align =
1

Ns

Ns∑
i=0

(1− vSi ·WIEb′i

max
(
∥vSi∥2 ·

∥∥WIEb′i∥∥
2
, ϵ
) ),

(12)
where the ϵ is a constant set to avoid a zero denominator.

2.6 Overall Loss
(a) ConFGD: minLConFGD = Lpred+λdomainLdomain+

λfreq(LFF + LFC) + λCL(L
S
CL + LT

CL).
(b) ConFGD+:

minLConFGD+ = LConFGD + λllm alignLllm align.

3 Experiment Preparation
To evaluate the effectiveness of our proposed ConFGD and
ConFGD+, we conduct experiments on three benchmark
datasets, HAR (Anguita et al. 2013), WISDM (Kwapisz,
Weiss, and Moore 2011) and HHAR (Stisen et al. 2015).
Besides, we utilize GPT3 from OpenAI (OpenAI 2024) to
create the text embedding dictionary for the LAA module
during data preparation. The dataset preparation details are
specified in Appendix D. To demonstrate how our proposed
ConFGD and ConFGD+ models significantly improve the
accuracy on target domains, we randomly select 10 source-
target domain pairs for HAR and WISDM, and 7 pairs for
HHAR during the evaluation, where the domains are distinct
by different participants. More dataset details are specified in
Appendix D.

During the experiments, we choose 2 w/o UDA models
and 11 UDA models as the baseline models. The 2 w/o UDA
models are different from whether including the graph dis-
covery encoder. The 11 baseline models are illustrated in
Appendix E.1. To further assess the effectiveness of our pro-
posed LAA module in ConFDG+, we incorporate this module
into the w/o UDA and CLUDA models for experimentation.
These models are only trained on the source domain and
selected by the performance on the validation source domain
dataset. More specific training details, time of execution, and
contrastive learning augmentation strategy are specified in
Appendix E.2 and E.3.



Dataset Metric TCN(w/o UDA) w/o UDA VRADA CoDATS AdvSKM CAN CDAN DDC DeepCORAL DSAN HoMM MMDA CLUDA ConFGD ConFGD+

HAR

Avg. Acc 60.48 80.60 77.03 66.24 61.93 67.98 69.58 61.57 71.21 74.70 70.66 59.18 91.21 94.86 96.81
Std. 18.79 15.07 6.65 19.33 19.58 14.26 15.80 18.81 11.07 11.23 13.99 18.66 6.78 4.63 3.87

Avg. F1 53.63 77.69 71.05 59.57 55.15 62.97 62.69 54.85 66.86 70.89 64.36 49.15 90.63 94.84 96.69
Std. 19.56 17.45 9.05 19.32 20.25 16.35 19.94 19.56 12.58 12.39 16.19 19.58 7.54 5.12 4.09

WISDM

Avg. Acc 66.26 62.08 65.69 64.41 64.91 58.45 57.90 66.07 63.54 59.10 60.22 53.77 72.32 79.15 80.67
Std. 11.69 8.68 11.40 12.88 10.36 12.15 17.93 10.05 14.03 17.29 14.19 17.93 7.55 4.50 5.03

Avg. F1 50.20 46.04 47.67 46.71 46.79 45.33 37.66 48.01 44.04 46.48 43.33 35.30 53.92 62.25 65.42
Std. 9.56 10.68 17.39 10.54 9.04 13.08 14.79 8.37 9.59 18.02 13.16 14.09 15.50 16.16 15.25

HHAR

Avg. Acc 68.84 76.51 73.57 59.89 64.96 73.69 63.92 64.81 73.38 62.38 71.44 58.95 75.90 83.08 84.11
Std. 12.72 16.31 19.63 11.12 15.75 16.64 20.27 16.83 13.64 18.58 14.48 12.68 14.61 12.46 12.24

Avg. F1 66.44 73.92 70.98 57.43 60.28 69.83 57.18 61.41 71.25 60.47 67.93 56.21 74.83 82.09 83.94
Std. 13.92 20.26 17.56 11.43 18.19 21.01 22.52 18.98 17.85 20.42 17.95 12.33 15.68 14.50 12.31

Table 1: Average evaluation results (Accuracy (%) and Macro F1 (%)) of the baseline models over 10 pairs of source-target
domains on the HAR and WISDM and 7 pairs of source-target domains on HHAR (Higher is better. The best is in bold and the
second best is marked with underline) with the standard deviation (Std., lower is more stable) .

4 Experiment Results
4.1 Performance Comparison
The average results of evaluating the baseline models over 10
pairs of source-target domains on the HAR and WISDM and
7 pairs of source-target domains on HHAR are shown in Ta-
ble. 1. We provide the full UDA results for each pair and each
model in Appendix F. In the results for HAR, our ConFGD
surpasses the best baseline model, CLUDA by 4.00% in ac-
curacy and 4.44% in Macro F1 metrics (Accuracy: 94.86 vs.
91.21; Macro F1: 94.84 vs. 90.63). In the results for WISDM,
our ConFGD surpasses the best baseline model, CLUDA by
9.40% in accuracy and 15.44% in Macro F1 metrics (Ac-
curacy: 79.15 vs. 72.32; Macro F1: 62.25 vs. 53.92). Thus,
our proposed ConFGD is more effective and better suited
for handling the more challenging WISDM prediction. Re-
garding HHAR, our ConFGD surpasses the best baseline
model, CLUDA by 9.46 % in accuracy and 9.70 % in Macro
F1 metrics (Accuracy: 83.08 vs. 75.90; Macro F1: 82.09 vs.
74.83). By adding the LAA to the ConFGD, all the Con-
FGD+ results surpass the basic ConFGD models, proving the
LAA module’s effectiveness. A more specific evaluation of
the LAA module is demonstrated in Sec. 4.2. Based on the
standard deviation (Std.) in the accuracy metrics for HAR
and WISDM, and Std. in the Macro-F1 metrics for HAR, our
ConFGD and ConFGD+ models exhibit significantly smaller
Std. compared to the other models. Overall, our models are
not only effective but also achieve more stable prediction
accuracy by a large margin compared to the baseline models.

(a) w/o UDA (b) CLUDA (c) ConFGD (d) ConFGD+

Figure 3: Embedding t-SNE visualizations of w/o UDA,
CLUDA, ConFGD, and ConFGD+ on the benchmark dataset
HAR (Anguita et al. 2013). The classes are differentiated by
colors. The “star” shapes are from the source domain, and
the “round” shapes are from the target domain.

Embedding visualization: Fig. 3 visualizes the embed-
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Figure 4: LAA Module Evaluation Results

dings to illustrate the domain discrepancies learned by dif-
ferent models. In Fig. 3a, w/o UDA exhibits a clear domain
shift, where the green class splits into two clusters, and some
classes overlap. Fig. 3b and Fig. 3c represent CLUDA and
ConFGD, the best baseline CL framework models, which
show clearer clusterings compared to w/o UDA, confirming
the effectiveness of contrastive learning. However, slight do-
main shifts and occasional class mixing are still present. Con-
FGD, with its novel FCCL framework aligning contextual
representations at the frequency level, further reduces class
mixing compared to CLUDA. Fig. 3d, depicting ConFGD+,
achieves the most distinct clusterings, with source and target
domain embeddings well-aligned and no visible class mix-
ing, thanks to its language-guided alignment. These findings,
supported by additional t-SNE visualizations in Appendix I,
validate the effectiveness of ConFGD and ConFGD+.

4.2 LAA Module Evaluation
To validate the effectiveness of LAA across different LLMs,
we tested it on five paired WISDM datasets using GPT-
3 (Brown et al. 2020), BERT (Devlin et al. 2019), and
LLaMA2 (Touvron et al. 2023) as text embedding frame-
works. The results (Appendix G) confirmed its robustness,
with GPT-3 showing slightly better accuracy and LLaMA2
excelling in F1 score. Ultimately, GPT-3 was chosen as the
primary model for its advanced natural language understand-
ing, high-quality embeddings, and extensive training on di-
verse textual data, making it ideal for our domain adaptation
tasks.

To extensively prove the effectiveness of our introduced
LAA module, we add it to not only our proposed ConFGD
but also the w/o UDA model and the best baseline model
CLUDA where the upgraded model is denoted with a “+”
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Figure 5: Ablation study: (a) w/o UDA, (b) w/o LFC&LFF ,
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Figure 6: The sensitivity analysis for different for different
λCL and λfreq

sign. Fig. 4 shows the performance comparisons between
the basic models and the upgraded “+” models. The perfor-
mances of all the upgraded models surpass their basic models.
To be noticed, on WISDM, the Macro-F1 score of CLUDA+
increased by 15.50% from CLUDA which is considered as
a significant improvement. Furthermore, it also proves the
accuracy and effectiveness of the LAA module. We provide
all the detailed results of the LAA module evaluations in
Appendix H.

4.3 Ablation Study
We conduct an ablation study of our proposed ConFDG
framework by comparing different ablation models (discard-
ing some parts of the variants) to gain a deeper insight
into the different components of our framework. The ab-
lation models used for the evaluations are (a) w/o UDA,
(b) w/o LFC&LFF , (c) w/o LCL, (d) w/o LCL&LFC&LFF ,
(e) w/o Ldomain and (f) w/o PE. Fig. 5 shows the ablation
study results on HAR and WISDM by averaging the 10
random initialization results. From the plotting graphs, all
the components contribute improvements over the base w/o
UDA which proves the effectiveness of the framework. In
Appendix J, we provide more detailed results of the ablation
study.

Sensitivity Analysis: The results of the sensitivity anal-
ysis for the HAR and WISDM datasets are presenting in
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Figure 7: Top k Study Evaluataion Results

Fig. 6. We tested various values of λCL and λfreq ranging
from 0.05 to 0.2. Our results show that the ConFGD model
remains stable within a certain range for these hyperparame-
ters. In addition, the standard deviation (std.) of the F1 score
in WISDM case is only 0.71 (λCL) and 0.69 (λfreq) which
are considered very small values and imply the stable results
with varying in these two parameters.

Top k Study: In the vedge, the number of Top k nodes
are a changeable parameters and smaller Top k implies
higher computational efficiency. Fig. 7 shows the Top k
study results on the chosen source-target domain pairs of
HAR and WISDM with standard deviation (std.) bars, and
the overall average results. The std. values are very small,
where the std. value for HAR Macro-F1 is only 0.17 (0.18%
of the average value), indicating that the performances remain
strong and stable even when the number of Top k changes.
Therefore, reducing the number of Top k can effectively
speed up the computational efficiency while maintaining
high prediction accuracy. In Appendix E.2, we provide the
execution time for all the models which shows that by setting
the Top k to 5, our models achieve better results and faster
execution time compared to the second-best baseline model,
CLUDA. In Appendix K, we provide all the experiment re-
sults in detail of the Top k study.

5 Conclusion

In this work, we have proposed and developed a noteworthy
and novel MTS UDA contrastive learning-based framework,
ConFGD. First, we proposed and developed a novel FGD
module to identify and align inherent inter-series frequency
channel information and relationships for UDA of time series.
Additionally, we introduced an FCCL framework to coop-
erate with the frequency embeddings to capture frequency-
contextual representations and enhance prediction capabili-
ties by extracting label-invariant information. Furthermore,
we are pioneers in integrating the LLM as a time-saving and
computationally efficient LAA module to further improve
prediction accuracy by aligning the classification feature with
LLM text-encoded labeled embeddings. Comprehensive ex-
periments were conducted to validate the effectiveness and
robustness of the proposed ConFGD and ConFGD+. Addi-
tionally, we upgraded other SOTA models with the LAA
module to verify its superiority and effectiveness. Compar-
isons with various alternative SOTA approaches were made
using two evaluation criteria on three benchmark datasets,
effectively demonstrating the superiority and accuracy of our
proposed method.
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A Related Work
Contrastive Learning: Contrastive learning (CL) is a
method that seeks to learn representations through self-
supervised learning (SSL). This means that it aims to place
similar samples (positive pairs) close to each other in the
embedding space while pushing dissimilar samples (negative
pairs) further apart (He et al. 2019). This method utilizes the
two augmented views and optimizes their mutual informa-
tion lower bound to capture the semantic information of the
input samples. There are some typical works in the CL. Con-
trastive predictive coding (CPC) (Oord, Li, and Vinyals 2018)
designed to capture the global information across different
time series segments by the predictive coding technique. Sim-
CLR (Chen et al. 2020b) minimized the NT-Xent loss for the
generated augmented views in the embedding space. Moment
contrast (MoCo) (He et al. 2019) is considered a significant
work in CL which generates two augmented views from the
input samples as the query and key, and gets the embedding
of the key by a momentum-updated encoder and stored in
a queue to further used as the negative pairs for the other
samples.

CL is also widely applied in many UDA tasks. CL reduces
the domain discrepancy by minimizing a contrastive loss
and aligning the source and target embeddings which are
from the same class. Due to the labels of the target samples
are unknown, these methods rely on pseudo-labels produced
by a clustering algorithm (Ozyurt, Feuerriegel, and Zhang
2022). CAN (Kang et al. 2019) designed a discrepancy-
metric-based CL framework to align features in the class
domain. CLDA (Singh 2021) introduced a simple single-
stage CL training framework and aligned features at class
centroids and instance levels. The studies discussed provide
valuable insights into integrating CL frameworks into unsu-
pervised domain adaptation.

Contrastive Learning for Time Series: There is a grow-
ing number of research focused on creating contrastive learn-
ing frameworks tailored for time-series data. There are some
notable works which are mainly on time series forecasting,
classification, and anomaly detection (Tonekaboni, Eytan,
and Goldenberg 2021). TNC (Tonekaboni, Eytan, and Gold-
enberg 2021) proposed a debiased contrastive framework
to distinguish the representation space, signals in the local
neighborhood from non-neighboring signals. TFC (Zhang
et al. 2022) aligned the time-frequency consistency for fore-
casting. TS-TCC enhanced the consistency between strong
and weak augmentations of the same sample within the CPC
framework. FOCAL (Liu et al. 2023) extract comprehensive
information from the factorized orthogonal latent space of
multi-modal time series. The aforementioned studies demon-
strate the significant effectiveness of CL frameworks in time-
series tasks. In the MTS UDA task, CLUDA (Ozyurt, Feuer-
riegel, and Zhang 2022) is the first CL framework that is
incorporated with the MoCo framework to align the label
invariant information by capturing the contextual representa-
tions. CALDA (Wilson, Doppa, and Cook 2023) combined
the CL framework with adversarial learning. These works of
CL frameworks in the MTS UDA show their effectiveness
and great potential.

Unsupervised Domain Adaptation: UDA is a machine

learning technique that aims to reduce label dependency by
aligning the features from the labeled source domain with
those of unlabeled target domain features, thus mitigating the
feature discrepancy between the two domains and predicting
the unlabeled target domain. UDA has been widely applied in
many fields, such as computer vision (CV) (Zhang 2021), nat-
ural language processing (NLP) (Ramponi and Plank 2020),
video (Xu et al. 2022), and also time series (Ragab et al.
2023). These methods can be generally categorized into
two paradigms. The first one is adversarial-based methods
which reduce the domain discrepancy by learning the domain-
invariant features from training the domain discriminator net-
works. The examples are CV: DANN (Ganin et al. 2016), ad-
versarial discriminative domain adaptation (ADDA) (Tzeng
et al. 2017), NLP: language identification (Li, Baldwin, and
Cohn 2018), natural language inference, video: adversar-
ial bipartite graph (ABG) (Luo et al. 2020) and time series:
CoDATS (Wilson, Doppa, and Cook 2020) and CALDA (Wil-
son, Doppa, and Cook 2023). The second one is metric-based
methods which aim to mitigate the domain statistical distri-
bution shift between source and domains. The examples are
CV: deep subdomain adaptation network (DSAN) (Zhu et al.
2020), Deep Coral (Sun and Saenko 2016), and RNA (Luo
et al. 2024), NLP: distant-bandits (Guo, Pasunuru, and Bansal
2020), video: duel metric domain adaptation (Wang et al.
2021) and time series: sparse associative structure align-
ment (SASA) (Cai et al. 2021) and adversarial spectral ker-
nel matching (AdvSKM) (Liu and Xue 2021). These UDA
methods have demonstrated their efficacy in reducing the re-
liance on labeled data for Deep Learning training. Frequency
transformation has proven highly effective for domain adap-
tation in areas like CV. For instance, FDA (Yang and Soatto
2020) employed low-frequency spectral swapping for seman-
tic segmentation, while CAFT++ (Kumar et al. 2023) used
class-aware frequency transformation to swap low-frequency
information between classes, reducing domain shift.

Unsupervised Domain Adaptation for Time Series: Sev-
eral works have been designed for MTS UDA, which broaden
the range of applications for time series. In Variational re-
current adversarial deep domain adaptation, (VRADA) (Pu-
rushotham et al. 2022b), they utilized adversarial learning
to align temporal features across domains, employing a
variational recurrent neural network as the feature extrac-
tor. CoDATS (Wilson, Doppa, and Cook 2020) built upon
VRADA’s adversarial training but used a convolutional neu-
ral network for feature extraction. SASA (Cai et al. 2021)
and AdvSKM (Liu and Xue 2021) are metric-based methods
that align intra- and inter-variable attention mechanisms or
spectral kernel mappings, respectively, to minimize domain
discrepancy. These methods focus on aligning features across
source and target domains. In addition to these, other UDA
methods have been proposed. For example, Lai et al. (Lai et al.
2023) employed a Markov decision process formulation and
deep reinforcement learning for aligning context information
between different time series domains for anomaly detection.
He et al. (He et al. 2023) addressed feature and label shifts be-
tween domains using temporal and frequency features. ADA-
TIME (Ragab et al. 2023) have evaluated various existing
time series UDA models where they captured temporal dy-



namics by CNN. Furthermore, autoregressive models (Ragab
et al. 2024), contrastive learning (Ozyurt, Feuerriegel, and
Zhang 2022; Wilson, Doppa, and Cook 2023), sensor align-
ment model (Wang et al. 2023) and temporal-spectral fu-
sion (Yang and Hong 2022) have also been explored in the
context of UDA for time-series data. These methods are
valuable as they do not rely on labels in the target domain,
highlighting their potential for various applications involving
time-series data.

Research Gap: In MTS UDA, the majority of current
studies focus solely on aligning intra-series features within
the time-domain signal. These approaches neglect valuable
information from inter-series dependencies, including fre-
quency information. Additionally, research in MTS UDA
regarding the capture of contextual representations is limited,
even with no exploration of frequency-contextual representa-
tions where the label-invariant information in the contextual
representations is a better alignment across domains for each
class. Therefore, we develop a novel framework, ConFGD, to
get a better generalization over the unlabeled target domain.

B Positional Encoding
In Sec. 2.3, we apply two different positional encoding strate-
gies targeting the encoder node vnode and edge vedge em-
beddings respectively. vnode is added with 1D frequency
positional encoding which is denoted as

PE(q,2p) = sin
( q

100002p/P

)
,

PE(q,2p+1) = cos
( q

1100002p/P

)
,

(13)

where q is the position of the frequency channels in vnode.
vedge is added with 2D frequency positional encoding which
is denoted as

2DPE(q1,q2,2p) = sin

(
q1

100002p/P
+

q2

100002p/P

)
,

2DPE(q1,q2,2p+1) = cos

(
q1

100002p/P
+

q2

100002p/P

)
,

(14)
where (q1, q2) is the frequency position in the edge embed-
ding Top k(vedge). 2p is referring to the features at even
positions, and 2p+ 1 is the features at odd positions.

C Graph Neural Network
In our model, the GNN utilized in the graph discovery en-
coder Genc(·) and decoder Gdec(·) is to capture the inter-
frequency interactive correlations. For input embeddings with
2S frequency channels, the directed graph can be denoted as
G = {V, E} where the vertices V = {fi} is embeddings of
each frequency channels and the edge E = {(fi, fj , fij)} is
the directed interactive correlation from frequency channel
i to j with the associate edge attribute fij . Our GNN uses
a similar structure as the Interaction Network (IN) [1] to
generate the node and edge embeddings for each frequency
channel and their paired relations which are shown below,

hij = Edge(fi, fj , fij) (fi, fj , fij) ∈ E ,

hi = Node(fi,
∑
j∈Si

hij) fi ∈ V. (15)

The Edge(·) and Node(·) are the edge and node embeddings
encoders respectively which are just one simply linear layer.
Si is the gathering of all vertices that have an edge pointing
to the frequency channel i.

In addition, the edge of the directed graph to Genc(·) is
predicted from the input frequency hidden representation
H ∈ R2S×P . Each frequency channels hidden representation
Hi ∈ RP is repeated to be 2-D dimension as Ĥi ∈ RP×P .
Then the edge information prediction is denoted as

Hnode,Hedge = Edgeinf ({Ĥi}i∈2S), (16)

where the Edgeinf (·) is the function embedded inside
Genc(·) and is two linear layers. The output of Genc(·) and
Gdec(·) is the aggregation of all the frequency channels edge
and node embeddings. We denote them in the general form
as hedge = {hij}i,j∈S and hnode = {hi}i∈S where the h
are v and g for Genc(·) and Gdec(·) respectively.

D Dataset Details
We chose three sensor datasets that have been widely uti-
lized in previous studies. In these datasets, participants en-
gage in different activities while wearing smartphones and/or
smartwatches. The objective is to predict the activity being
performed based on the sensor data. Table 2 provides the
summary statistics for all the datasets. Further details about
each dataset are provided below.

HAR (Anguita et al. 2013): The dataset includes measure-
ments from 3-axis accelerometer, 3-axis gyroscope, and 3-
axis body acceleration of 30 participants. The data is recorded
at 50 Hz, and we use non-overlapping segments of 128 time
steps to predict the activity type. There are 6 activities includ-
ing walking, walking upstairs, walking downstairs, sitting,
standing, and lying down. The label statistics for each sub-
jects are shown in Fig. 8. In our experiments, we randomly
selected 10 cross-domain scenarios out of a large number of
domain combinations.

WISDM (Kwapisz, Weiss, and Moore 2011): The dataset
comprises 3-axis accelerometer measurements from 30 par-
ticipants, recorded at 20 Hz. We utilize non-overlapping seg-
ments of 128 time steps to predict the activity type, which
includes walking, jogging, sitting, standing, walking upstairs,
and walking downstairs. This dataset poses a challenge due
to class imbalance across participants, with some participants
not performing all activities (Fig. 9). Similar to HAR, in the
experiments, we also randomly combined 10 sets of cross-
domain scenarios out of all the domain combinations.

HHAR (Stisen et al. 2015): HHAR includes measure-
ments from 3-axis accelerometer sensors of 9 participants and
the data is recorded at 50 Hz where we use non-overlapping
segments of 128 time steps to predict the activity type. The
activity types are biking, sitting, standing, walking, walk-
ing upstairs, and walking downstairs. The label statistics for
each subjects are shown in Fig. 10. In our experiments, we
randomly selected 7 cross-domain scenarios out of a large
number of domain combinations.

ConFGD+ Data Preparation: We need to generate the
embedding dictionary from the labels prompts for the LAA
based on the description in Sec. 2.5 and Fig. 2. We choose the



Dataset Domains/Subjects Channels Classes Sequence Length Training Samples Validation Samples Test Samples

HAR 30 9 6 128 7194 1542 1563
WISDM 30 3 6 128 3870 1043 1052
HHAR 9 3 6 128 10336 2214 2222

Table 2: Benchmark datasets details

text embedding models from OpenAI (OpenAI 2024) for the
text embedding generation. They offered three embedding
models which are text-embedding-3-small, text-embedding-
3-large and text-embedding-ada-002. The label prompts for
above benchmark dataset are:

• HAR Label Prompt: {“biking”, “sitting”, “standing”,
“walking”, “stair up”, “stair down”}

• WISDM Label Prompt: {“walking”, “jogging”, “stair up”,
“stair down”, “sitting”, “standing”}

• HHAR Label Prompt: {“biking”, “sitting”, “standing”,
“walking”, “walking upstairs”, “walking downstairs”}
In the embedding dictionary, each prompt and their em-

beddings would be store as:
{HAR, 0, “biking”, Ebbiking}

where the Eb is the text embedding of “biking”. This step is
off-line prepared and “once for all” implementation. The text
embeddings will be added as an entry for each sample (the
same as loading ground true for each sample) during the data
loading which does not need computational effort. Therefore,
it is a low-effort but high-profit module.

Performance metrics: We apply two metrics as the per-
formance metrics which are accuracy and Macro-F1. More
training and evaluation details are shown in Sec. E.

E Training Details
In this section, the training details are provided which in-
clude the briefings of all the baseline models, and the training
process details. As the CL framework requires to implement
augmentation strategy, the augmentation details are also pro-
vided in this section.

E.1 Baseline Models
TCN (w/o UDA) & w/o UDA: The difference between these
two is, that TCN (w/o UDA) is only trained on source domain
dataset without UDA and utilizes the temporal convolutional
network (TCN) as the feature extractor, and w/o UDA is
our proposed ConFGD model trained without UDA but the
feature extractor has an additional graph discovery encoder
as shown in Fig. 1. As TCN is the feature extractor for some
of our baseline models, such as CoDATS, AdvSKM and
CLUDA, we take TCN (w/o UDA) into the evaluation.

VRADA: (Purushotham et al. 2022b) build a variational
recurrent neural network (VRNN) and train adversarial to
capture complex temporal relationships that are domain-
invariant.

CoDATS: (Wilson, Doppa, and Cook 2020) utilizes ad-
versarial training combined with weak supervision from a
CNN network to enhance performance on MTS UDA.

AdvSKM: (Liu and Xue 2021) aligns spectral kernel
feature to emphasize the non-monotonic and non-stationary
problem in MTS by metric-based methods,

CAN: (Kang et al. 2019) originally designed for vision
and aligns features in the class domain by a discrepancy-
metric-based cl framework.

CDAN: (Long et al. 2018) stands for conditional adversar-
ial domain adaptation and was originally designed for vision
and suggests a conditional adversarial alignment approach by
integrating task knowledge with features during the domain
alignment process

DDC: (Tzeng et al. 2014) originally designed for vision
and align the source and target domains by minimizing the
Maximum Mean Discrepancy (MMD) distance.

DeepCORAL: (Sun and Saenko 2016) originally de-
signed for vision and to mitigate the domain shift by aligning
source and target distributions from their second-order statis-
tics.

DSAN: (Zhu et al. 2020) initially designed for vision
applications, employs a Local Maximum Mean Discrepancy
(LMMD) to align sub-domain distributions, thereby reducing
the discrepancy between the source and target domains.

HoMM: (Chen et al. 2020a) stands for higher-order mo-
ment matching and was originally designed for vision. Match-
ing higher-order moments to minimize the discrepancy be-
tween domains.

MMDA: (Rahman et al. 2020) stands for minimum dis-
crepancy estimation for deep domain adaptation and was orig-
inally designed for vision. MMDA incorporates both MMD
and CORAL and mitigate the domain shift by introducing
conditional entropy minimization into the training.

CLUDA: (Ozyurt, Feuerriegel, and Zhang 2022) intro-
duces contrastive learning into UDA to capture the contextual
representations for obtaining the label invariant information
and enhance the prediction.

E.2 Training Process
In Table 3, we provide the details of the hyperparameters
for each baseline model individually. It is important to note
that the first row, “TCN (w/o UDA), all models”, indicates
that these hyperparameters are applied to all models with the
same tuning strategy. We performed a grid search strategy
for tuning and evaluations.

We implemented all the experiments in PyTorch 2.2.1 on
the NVIDIA GeForce RTX 3090 with 24GB GPU. All the
models including our proposed models include TCN temporal
projection layer T (·). To keep the consistency, we set the
kernel size to be 3 and the dilation factor to be 2. In addition,
we use 3 layers with 64 channels. We maintain a consistent
configuration for the TCN model across all baseline models
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Figure 8: HAR: Labels statistics summary for individual subjects
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Figure 9: WISDM: Labels statistics summary for individual subjects
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Figure 10: HHAR: Labels statistics summary for individual subjects

and benchmark datasets. We chose a batch size of 32 for all
the benchmark datasets and we trained all methods for a max
of 1600 epochs.

To report the performance results to resemble the real-
world scenario of UDA closely, we avoided using labels
from target domains and introduced an early stopping strat-
egy into our training based on the validation loss. Learning
from (Ben-David et al. 2010), we selected models that have
better performance metrics (Appendix. D) on the validation
dataset of the source domain, as the target domain loss is
theoretically bounded by the source domain loss and along
with additional factors that are restricted and passive. Besides,
when the model repeatedly achieves the best validation pre-
dictions on the source domain, we will then save the model
that achieves better validation performance metrics on the
target domain among these instances. After finalizing the
model selection, we assess its predictions on the labeled test
dataset from both the target and source domains, which were
not part of the training or model selection phases. The model
selection criteria were applied consistently across all baseline
methods in E.1 to ensure equitable comparisons. To address
the variance in test performance across methods, we con-
ducted the individual experiment with 10 unique and random
initialization, and presented the results using error bars.

To report the time of execution, we average the runtime
for running 100 steps for each models. w/o UDA: 8.58 sec-
onds, w/o UDA+: 8.80 seconds, TCN (w/o UDA): 8.20 sec-
onds, VRADA: 56.00 seconds, CoDATS: 22.60 seconds, Ad-
vSKM: 23.20 seconds, CAN:23.30 seconds, CDAN: 22.80
seconds, DDC: 23.81 seconds, DeepCORAL: 22.35 seconds,
DSAN: 26.70 seconds, HoMM: 21.50 seconds, MMDA:
23.52 seconds, CLUDA: 35.74 seconds, CLUDA+: 36.68
seconds, ConFDG (Top k is 5): 35.23 seconds, ConFDG+
(Top k is 5): 35.55 seconds, ConFDG (Top k is 7): 38.58
seconds, ConFDG+ (Top k is 7): 38.64 seconds,ConFDG
(Top k is 10): 44.37 seconds, ConFDG+ (Top k is 10):
45.33 seconds.

E.3 Augmentation Strategy
In the model architecture shown in 1, we generate two aug-
mentation views for each input sample in order to capture
the frequency-contextual representation of the time series.
To achieve this, we leverage semantic-preserving augmenta-
tion strategy (Del Pup and Atzori 2023). The augmentation
hyperparameter details are listed below:

Gaussian noise: The Gaussian noises are added to each

sensor measurement independently and the standard devia-
tion is 0.1.

History crop: The history crop masks out a minimum
20% of the initial time series with a 50% probability.

History cutout: We randomly select a time window repre-
senting 15% of the total time series length, with a probability
50%.

Channel dropout: We independently mask out each sen-
sor measurement with a probability 10%, applied to each
channel separately.

F UDA Results on the Benchmark Datasets
We conduct the UDA task of prediction on the three bench-
mark datasets, HAR, WISDM and HHAR (Sec. D). For each
dataset, we evaluate 11 Baseline models, 2 w/o UDA mod-
els and two of our proposed models (ConFGD and Con-
FGD+) where the baseline model details can be checked
from Sec. E.1. Besides, for justice, we randomly select 10
pairs of source and target domains for each dataset and con-
duct 10 random initialized experiments for each pair on HAR
and WISDM, and 7 pairs of source and target domains for
each dataset and conduct 10 random initialized experiments
for each pair on HHAR. We take the mean values of the 10
experiments for each pair. We evaluate each model from two
metrics, Accuracy and Macro-F1. Table. 4 are the results of
HAR, Table. 5 are the results of WISDM and Table. 6 are the
results of HHAR. Fig. 11 shows the evaluation results.

Regarding the HAR dataset (Table. 4), our ConFGD model
outperforms the baseline models in 18 out of 20 instances.
The ConFGD+ model surpasses the baseline models in all
20 instances. Additionally, ConFGD+ delivers better results
than ConFGD in 18 out of 20 comparisons.

Regarding the WISDM dataset (Table. 5), our ConFGD
model outperforms the baseline models in 16 out of 20 in-
stances. The ConFGD+ model surpasses the baseline models
in 17 out of 20 instances. Additionally, ConFGD+ delivers
better results than ConFGD in 18 out of 20 comparisons.

Regarding the HHAR dataset (Table. 6), our ConFGD
model outperforms the baseline models in 17 out of 20 in-
stances. The ConFGD+ model surpasses the baseline models
in 17 out of 20 instances. Additionally, ConFGD+ delivers
better results than ConFGD in 19 out of 20 comparisons.

G LAA with different pre-trained models
We performed experiments on five paired WISDM datasets
by selecting three mainstream pre-trained large-scale models–



Method Hyperparameter Name Tuning Range

TCN (w/o UDA), all models

Optimizer Adam
Learning rate 2 · 10−4, 1 · 10−4

Dropout Rate 0.1, 0.2
Weight decay 1 · 10−4, 1 · 10−3

Classifier hidden dim 64, 128 256

VRADA (Purushotham et al. 2022b)

VRNN layers 1,2,3
Discriminator loss weight 0.1, 0.5, 1

KL divergence weight 0.1, 0.5, 1
Neg. log-likelihood weight 0.1, 0.5, 1

CoDATS (Wilson, Doppa, and Cook 2020) Discriminator loss weight 0.1, 0.5, 1

AdvSKM (Liu and Xue 2021)
Spectral kernel Linear, Gaussian

Number of kernels (Gaussian) 3, 5, 7
MMD loss weight 0.1, 0.5, 1

CAN (Kang et al. 2019)

Kernel type Linear, Gaussian
Number of kernels (Gaussian) 3, 5, 7

K-means iterations 1, 3, 5
MMD loss weight 0.1, 0.5, 1

CDAN (Long et al. 2018)
Multiplier discriminator update 0.1, 1, 10

Discriminator loss weight 0.1, 0.5, 1
Conditional entropy loss weight 0.1, 0.5, 1

DDC (Tzeng et al. 2014)
Kernel type Linear, Gaussian

Number of kernels (Gaussian) 3, 5, 7
MMD loss weight 0.1, 0.5, 1

DeepCORAL (Sun and Saenko 2016) CORAL loss weight 0.1, 0.3, 0.5, 1

DSAN (Zhu et al. 2020)
Kernel multiplier 1, 2, 3

Number of kernels 3, 5, 7
Domain loss weight 0.1, 0.5, 1

HoMM (Chen et al. 2020a) Domain discrepancy loss weight 0.1, 0.5, 1
Discriminative clustering loss weight 0.1, 0.5, 1

MMDA (Rahman et al. 2020)

Kernel type Linear, Gaussian
Number of kernels (Gaussian) 3, 5, 7

MMD loss weight 0.1, 0.5, 1
CORAL loss weight 0.1, 0.5, 1
Entropy loss weight 0.1, 0.5, 1

CLUDA (Ozyurt, Feuerriegel, and Zhang 2022)

Momentum 0.9, 0.95, 0.99
Queue size 8192, 12288, 24576

Discriminator loss weight 0.1, 0.5, 1
Contrastive loss weight 0.05, 0.1, 0.2

Nearest-neighbor contrastive learning loss weight 0.05, 0.1, 0.2

ConFGD (ours)

Number of frequency decomposition 5
Momentum 0.9, 0.95, 0.99
Queue size 8192, 12288, 24576

Number of Topk 5, 7, 10
λdomain 0.1, 0.5, 1
λfreq 0.5, 0.1, 0.2
λCL 0.05, 0.1, 0.2
ϵ 1 · 10−8

ConFGD+ (ours) λllm align 0.05, 0.1, 0.2

Table 3: Hyperparameter tuning setup



Model 1→2 2→5 13→ 19 15→ 19 18→ 21 19→ 25 20→ 1 23→ 13 24→ 22 25→ 24 Avg. Std.

TCN(w/o UDA) 56.52 28.26 79.60 72.20 55.20 46.10 86.79 44.80 80.80 54.50 60.48 18.79
w/o UDA 82.61 54.45 83.33 96.30 91.94 59.68 94.34 66.00 87.76 89.66 80.60 15.07
VRADA 60.87 80.43 75.20 75.60 79.40 76.80 83.02 73.60 83.70 81.70 77.03 6.65
CoDATS 71.74 39.13 79.30 73.33 55.20 46.80 96.23 50.40 92.00 58.30 66.24 19.33
AdvSKM 58.70 26.09 80.70 74.10 55.50 45.20 88.68 50.40 83.30 56.60 61.93 19.58

CAN 67.39 50.00 78.50 68.50 55.20 66.10 92.45 47.60 82.00 72.10 67.98 14.26
CDAN 36.96 52.17 84.10 75.90 80.30 77.10 56.60 70.00 83.70 79.00 69.58 15.80
DDC 58.70 26.09 80.00 73.33 54.80 45.50 86.79 50.40 80.80 59.30 61.57 18.81

DeepCORAL 63.04 71.74 79.30 75.90 61.00 59.00 96.23 66.80 74.30 64.80 71.21 11.07
DSAN 73.91 63.04 72.60 87.40 55.80 77.40 84.91 62.80 80.80 88.30 74.70 11.23
HoMM 69.57 73.91 81.50 74.08 58.10 48.70 94.34 60.40 85.30 60.70 70.66 13.99
MMDA 36.96 36.96 80.00 72.60 55.50 44.80 43.40 57.20 82.90 81.50 59.18 18.66
CLUDA 86.96 82.61 90.40 96.70 91.00 93.20 94.34 78.80 98.80 99.30 91.21 6.78

ConFGD 91.30 86.96 94.44 98.15 98.15 95.16 98.11 88.00 100 98.28 94.86 4.63
ConFGD+ 91.50 89.13 100 98.15 98.15 100 100 96.00 100 100 96.81 3.87

TCN(w/o UDA) 50.14 23.89 74.30 64.70 43.10 36.90 85.56 37.70 71.20 48.80 53.63 19.56
w/o UDA 83.12 45.32 82.88 97.14 87.64 56.38 94.09 60.29 81.25 88.75 77.69 17.46
VRADA 50.48 79.92 69.60 65.70 66.80 73.70 81.62 69.60 74.90 78.20 71.05 9.05
CoDATS 72.51 39.07 73.80 66.30 42.80 38.10 96.13 44.00 71.40 51.60 59.57 19.32
AdvSKM 52.25 21.83 76.90 66.40 44.50 35.90 87.22 43.60 72.60 50.30 55.15 20.25

CAN 65.57 44.46 72.90 59.30 43.40 64.00 91.66 41.00 77.20 70.20 62.97 16.35
CDAN 23.58 38.08 83.70 69.60 71.80 76.80 45.25 66.00 75.60 76.50 62.69 19.94
DDC 52.97 21.83 75.20 65.80 42.70 36.00 86.79 44.70 71.00 52.70 54.85 19.56

DeepCORAL 59.33 69.87 76.30 70.80 53.90 53.50 96.13 61.60 64.70 62.50 66.86 12.58
DSAN 72.95 63.17 66.20 83.10 45.80 75.40 81.78 60.60 72.60 87.30 70.89 12.39
HoMM 58.71 69.44 79.80 68.60 48.60 39.70 93.21 54.90 76.80 53.80 64.36 16.19
MMDA 23.48 23.05 75.20 65.60 44.00 34.80 36.40 52.70 72.20 64.10 49.15 19.58
CLUDA 85.32 80.86 91.10 95.70 92.30 93.20 94.10 76.20 98.30 99.20 90.63 7.54

ConFGD 91.22 86.18 97.44 97.44 97.44 94.97 98.44 86.40 100 98.91 94.84 5.12
ConFGD+ 91.33 88.35 100 98.59 97.50 95.00 100 95.54 100 100 96.63 4.09

Table 4: Evaluation Results on HAR Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1 (%). The results are the mean
of the accuracy over 10 sets of random initialization (Higher is better. The best is in bold and the second best is marked with
underline).

Model 2→25 7→2 7→ 12 7→ 26 10→ 25 12→ 19 12→ 7 13→ 2 19→ 2 28→ 20 Avg. Std.

TCN(w/o UDA) 71.05 62.00 81.82 72.20 68.29 74.50 65.40 53.66 41.00 72.70 66.26 11.69
w/o UDA 65.79 63.41 63.64 78.05 68.42 54.55 56.25 51.22 51.22 68.29 62.08 8.68
VRADA 53.16 60.50 86.36 69.30 73.68 55.80 70.80 48.78 64.40 74.10 65.69 11.40
CoDATS 65.79 61.00 86.36 70.20 60.53 63.30 72.10 51.22 39.50 74.10 64.41 12.88
AdvSKM 68.42 61.00 75.00 70.20 71.05 63.90 74.20 51.22 43.40 70.70 64.91 10.36

CAN 60.53 57.10 70.45 71.70 63.16 59.40 58.80 43.90 32.20 67.30 58.45 12.15
CDAN 78.93 64.90 38.64 72.20 44.74 48.80 77.10 41.46 34.60 77.60 57.90 17.93
DDC 78.95 62.00 77.27 71.70 63.16 56.40 69.20 63.41 45.90 72.70 66.07 10.05

DeepCORAL 76.32 62.40 79.55 68.30 78.95 43.30 59.20 46.34 47.30 73.70 63.54 14.03
DSAN 63.16 62.00 83.36 69.80 26.32 63.90 62.50 48.78 36.60 74.60 59.10 17.29
HoMM 76.32 60.50 75.00 69.80 55.26 41.50 54.60 41.46 48.80 79.00 60.22 14.19
MMDA 78.95 60.50 38.64 71.20 36.84 35.80 67.90 36.50 38.50 72.20 53.70 17.93
CLUDA 76.32 71.20 79.55 72.70 68.48 69.40 79.20 68.29 56.10 82.00 72.32 7.55

ConFGD 78.95 80.49 84.09 78.05 78.95 77.27 77.08 70.73 78.05 87.80 79.15 4.50
ConFGD+ 79.55 82.93 87.80 78.05 78.95 83.33 79.17 71.05 78.05 87.85 80.67 5.03

TCN(w/o UDA) 47.65 44.30 54.07 40.70 67.96 57.70 54.30 35.70 43.60 56.00 50.20 9.56
w/o UDA 40.64 48.72 55.16 42.46 47.38 39.05 33.07 33.55 52.31 67.96 46.03 10.68
VRADA 36.96 39.90 83.22 30.80 43.42 41.00 43.70 29.02 61.50 67.20 47.67 17.39
CoDATS 40.74 49.40 61.90 40.50 38.64 45.60 61.20 30.98 40.30 57.80 46.71 10.54
AdvSKM 42.14 47.60 43.65 41.60 42.31 51.00 65.50 32.37 46.00 55.70 46.79 9.04

CAN 38.64 49.00 44.44 39.50 46.49 50.80 63.60 22.62 32.70 65.50 45.33 13.08
CDAN 45.00 54.30 22.26 34.40 23.90 29.80 54.60 20.65 31.20 60.50 37.66 14.79
DDC 54.74 49.60 46.80 41.20 45.84 39.60 63.20 36.11 45.90 57.10 48.01 8.37

DeepCORAL 35.79 49.00 47.62 39.60 45.00 31.70 48.60 31.00 50.10 62.00 44.04 9.59
DSAN 40.15 48.10 80.42 40.10 17.50 51.80 57.40 25.00 42.80 61.50 46.48 18.02
HoMM 44.32 49.40 47.04 40.60 34.20 28.10 44.20 23.35 52.20 69.90 43.33 13.16
MMDA 45.00 45.90 25.44 38.50 13.46 23.30 53.90 23.24 30.60 53.70 35.30 14.09
CLUDA 43.59 57.60 80.44 40.30 55.95 53.20 67.80 27.26 45.80 67.30 53.92 15.50

ConFGD 54.74 72.12 85.34 44.95 45.00 59.45 79.37 43.73 55.94 81.82 62.25 16.16
ConFGD+ 55.95 77.70 86.60 45.80 51.56 70.03 77.11 45.80 61.76 81.86 65.42 15.25

Table 5: Evaluation Results on WISDM Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1 (%). The results are the mean
of the accuracy over 10 sets of random initialization (Higher is better. The best is in bold and the second best is marked with
underline).



Model 1→4 2→4 3→ 1 5→ 3 5→ 8 7→ 3 8→ 6 Avg. Std.

TCN(w/o UDA) 64.14 49.80 60.05 69.00 84.44 85.15 69.32 68.84 12.72
w/o UDA 60.16 49.40 80.09 93.89 92.22 82.10 77.73 76.51 16.31
VRADA 49.80 44.22 79.48 84.72 96.50 87.73 72.51 73.57 19.63
CoDATS 41.04 50.20 60.45 69.00 73.93 62.88 61.75 59.89 11.12
AdvSKM 59.76 37.05 68.66 63.32 83.66 82.10 60.16 64.96 15.75

CAN 54.18 54.58 81.72 80.79 93.39 89.08 61.35 73.69 16.64
CDAN 67.33 41.04 67.54 50.66 98.05 78.17 44.62 63.92 20.27
DDC 55.38 35.21 62.69 68.56 85.60 81.66 64.54 64.81 16.83

DeepCORAL 67.73 45.02 77.25 77.43 85.60 81.72 78.88 73.38 13.64
DSAN 61.35 34.66 61.35 79.48 87.89 67.69 44.22 62.38 18.58
HoMM 62.69 45.82 69.03 77.73 84.44 89.08 71.31 71.44 14.48
MMDA 54.58 41.04 68.28 54.18 80.93 60.26 53.39 58.95 12.68
CLUDA 73.71 58.50 64.55 87.34 96.50 87.34 63.35 75.90 14.61

ConFGD 80.08 59.46 82.84 90.39 99.22 89.52 80.08 83.08 12.46
ConFGD+ 81.50 60.40 83.21 92.58 99.22 89.83 82.00 84.11 12.24

TCN(w/o UDA) 58.33 43.57 68.58 60.45 78.07 86.05 70.04 66.44 13.92
w/o UDA 56.61 37.37 78.5 93.95 92.00 82.30 76.71 73.92 20.26
VRADA 51.18 41.58 78.88 83.68 79.40 87.95 74.21 70.98 17.56
CoDATS 36.99 45.98 61.04 64.83 68.26 62.74 62.14 57.43 11.43
AdvSKM 57.74 26.06 65.84 52.04 76.72 81.09 62.49 60.28 18.19

CAN 47.69 40.16 78.50 81.43 93.35 89.96 58.30 69.83 21.01
CDAN 41.58 47.69 58.46 36.50 98.08 76.30 41.62 57.18 22.52
DDC 55.16 24.32 60.62 61.82 79.02 81.33 67.58 61.41 18.98

DeepCORAL 63.79 33.83 75.16 78.5 83.68 83.68 80.10 71.25 17.85
DSAN 58.42 32.52 58.42 78.88 87.89 69.81 37.37 60.47 20.42
HoMM 58.30 33.04 68.95 76.71 77.41 88.84 72.27 67.93 17.95
MMDA 55.38 36.99 66.94 47.69 74.64 58.66 53.14 56.21 12.33
CLUDA 67.38 52.60 70.15 85.52 96.84 87.95 63.34 74.83 15.68

ConFGD 80.65 53.13 80.60 90.56 99.22 89.32 81.13 82.09 14.50
ConFGD+ 80.86 60.29 83.40 92.54 98.91 89.37 81.62 83.94 12.31

Table 6: Evaluation Results on HHAR Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1 (%). The results are the mean
of the accuracy over 7 sets of random initialization (Higher is better. The best is in bold and the second best is marked with
underline).

GPT3 (Brown et al. 2020), BERT (Devlin et al. 2019), and
LLaMA2 (Touvron et al. 2023)—as our text embedding
frameworks. The results shown in Table 7 demonstrate that
our proposed LAA module remains effective regardless of
the specific LLM used for text embedding, with GPT3 show-
ing slightly better accuracy (Up) and LLaMA2 slightly better
performance in F1 score (Down). After a comprehensive
evaluation, GPT-3 was selected as the primary model for
the LAA module, given its leading-edge natural language
understanding capabilities and its ability to produce high-
quality embeddings. In addition, GPT-3’s extensive training
on diverse textual data makes it exceptionally well-suited
for generating the word embeddings required in our domain
adaptation tasks.

H LAA Module Added for Existing Model
To further prove the effectiveness of our proposed LAA mod-
ule, we add it to not only ConFGD models but w/o UDA and
CLUDA models (denoted with a “+” sign) where the GPT3 is
chosen as the pre-trained large model. We evaluate the experi-
ments on both of the benchmark datasets HAR (Table. 8) and
WISDM (Table. 9) with the two evaluation metrics, Accuracy
and Macro-F1. Similar to Sec. F, we randomly initialize each

model 10 times and take the mean values as the results. The
results of adding LAA module as an adversary module to
other models show the significant effectiveness and accuracy
of the “low effort and high profit” module, LAA.

Regarding the HAR dataset (Table. 8), the upgraded model
archives better results than the basic model in 50 out of 60
instances, and 7 of the remaining instances maintain the
performance of the basic model.

Regarding the WISDM dataset (Table. 9), the upgraded
model archives better results than the basic model in 52 out
of 60 instances, and 5 of the remaining instances maintain
the performance of the basic model.

I Embedding Visualization of Benchmark
Models

We provide the embeddings t-SNE visualization of all the
baseline models on the benchmark dataset HAR (Anguita
et al. 2013) which is shown in Fig. 12 where the source
and target domain embeddings are differentiate by “star”
and “round” shapes. Without domain adaptation (refer to
Fig. 12a and Fig. 12b), TCN w/o UDA which is the most
basic w/o UDA model exists significant domain shift be-



Model 2→25 7→2 7→12 12→7 28→20 Avg. Std.

ConFGD 78.95 80.49 84.09 77.08 87.80 81.68 4.28

+GPT 3 79.55 82.93 87.80 79.17 87.85 83.46 4.25
∆ +0.60 +2.44 +3.71 +2.09 +0.05 +1.78

+Bert 78.95 80.49 84.12 78.95 87.80 82.06 3.84
∆ - - +0.03 +1.87 - +0.38

+LLaMA 2 81.58 82.00 85.12 79.17 87.85 83.14 3.38
∆ +2.63 +1.51 +1.03 +2.09 +0.05 +1.46

ConFGD 54.74 72.12 85.34 79.37 81.82 74.68 12.15

+GPT 3 55.95 77.70 86.60 77.11 81.86 75.84 11.75
∆ +1.21 +5.58 +1.26 -2.26 +0.04 +1.17

+Bert 58.98 72.12 85.37 78.95 81.82 75.45 10.41
∆ +4.24 - +0.03 -0.42 - +0.77

+LLaMA 2 67.5 72.70 86.60 79.55 81.86 77.64 7.57
∆ +12.76 +0.58 +1.26 +0.18 +0.04 +2.96

Table 7: Experiments conducted using various pre-trained large-scale models in LAA on the WISDM dataset. Up: Mean Accuracy
(%), Down: Mean Macro F1 (%).

Model 1→2 2→5 13→ 19 15→ 19 18→ 21 19→ 25 20→ 1 23→ 13 24→ 22 25→ 24 Avg. Std.

w/o UDA 82.61 54.45 83.33 96.30 91.94 59.68 94.34 66.00 87.76 89.66 80.61 15.07
w/o UDA+ 82.61 56.38 87.64 100.00 93.20 66.10 96.23 68.00 96.70 91.94 83.88 15.16

∆ 0 +1.93 +4.31 +3.70 +1.26 +6.42 +1.89 +2.00 +8.94 +2.28 +3.27

CLUDA 86.96 82.61 90.40 96.70 91.00 93.20 94.34 78.80 98.80 99.30 91.21 6.78
CLUDA+ 89.13 89.13 88.89 96.70 91.94 98.39 98.11 88.00 100.00 100.00 94.03 5.05

∆ +2.17 +6.52 -1.51 0 +0.94 +5.19 +3.77 +9.20 +1.20 +0.70 +2.82

ConFGD 91.30 86.96 94.44 98.15 98.15 95.16 98.11 88.00 100.00 98.28 94.86 4.63
ConFGD+ 91.50 89.13 100.00 98.15 98.15 95.16 100.00 96.00 100.00 100.00 96.81 3.87

∆ +0.20 +2.17 +5.56 0 0 0 +1.89 +8.00 0 +1.72 +1.95

w/o UDA 83.12 45.32 82.88 97.14 87.64 56.38 94.09 60.29 81.25 88.75 77.69 17.46
w/o UDA+ 83.12 45.8 83.33 100 93.20 64 96.67 62.79 95.70 87.64 81.23 17.90

∆ 0 +0.48 +0.45 +2.86 +5.56 +7.62 +2.58 +2.50 +14.45 -1.11 +3.54

CLUDA 85.32 80.86 91.10 95.70 92.30 93.20 94.10 76.20 98.30 99.20 90.63 7.54
CLUDA+ 86.77 88.69 90.96 96.79 93.51 98.40 97.78 86.49 100.00 100.00 93.94 5.37

∆ +1.45 +7.83 -0.14 +1.09 +1.21 +5.20 +3.68 +10.29 +1.70 +0.80 +3.31

ConFGD 91.22 86.18 97.44 97.44 97.44 94.97 98.44 86.40 100.00 98.91 94.84 5.12
ConFGD+ 91.33 88.35 100.00 98.59 97.50 95.00 100.00 95.54 100.00 100.00 96.63 4.09

∆ +0.11 +2.17 +2.56 +1.15 +0.06 +0.03 +1.56 +9.14 0 +1.09 +1.79

Table 8: Results for exiting models added on with LAA module on HAR Dataset. Up: Mean Accuracy (%), Down: Mean Macro
F1 (%). The results are the mean of the accuracy over 10 sets of random initialization.

tween the source and target domains, for example the red
color class is separated and merged with blue and cyan color
classes. However, our w/o UDA model has slightly improved
from the TCN but still has obvious class overlapping. Con-
sequently, embeddings from one class in the target domain
intersect with those of another class in the source domain,
leading to challenges for the classifier trained on the source
domain to effectively generalize to the target domain. While
UDA baselines reduce the domain shift, they still have signif-
icant overlapping or class shifting. In contrast, our ConFGD
method can effectively align embeddings from the same class
across different domains, resulting in better generalization
in the target domain, though a bit overlappings still happen.

To be noticed, the embeddings of our ConFGD+ which in-
corporates with LAA module have no obvious class shifting
and overlapping according to Fig. 12o, which proves the
effectiveness and accuracy of the LAA module.



Model 2→25 7→2 7→ 12 7→ 26 10→ 25 12→ 7 13→ 2 19→ 2 28→ 20 28→ 20 Avg. Std.

w/o UDA 65.79 63.41 63.64 78.05 68.42 54.55 56.25 51.22 51.22 68.29 62.08 8.68
w/o UDA+ 71.05 65.85 70.45 78.95 68.48 56.06 64.58 54.55 56.1 78.05 66.41 8.77

∆ +5.26 +2.44 +6.81 +0.90 +0.06 +1.51 +8.33 +3.33 +4.88 +9.76 +4.33

CLUDA 76.32 71.20 79.55 72.70 68.48 69.40 79.20 68.29 56.10 82.00 72.32 7.55
CLUDA+ 77.27 72.70 86.36 75.62 71.05 69.70 87.50 69.40 60.98 92.68 76.33 9.79

∆ +0.95 +1.50 +6.81 +2.92 +2.57 +0.30 +8.30 +1.11 +4.88 +10.68 +4.00

ConFGD 78.95 80.49 84.09 78.05 78.95 77.27 77.08 70.73 78.05 87.80 79.15 4.50
ConFGD+ 79.55 82.93 87.80 78.05 78.95 83.33 79.17 71.05 78.05 87.85 80.67 5.03

∆ +0.60 +2.44 +3.71 0 0 +6.06 +2.09 +0.32 0 +0.05 +1.53

w/o UDA 40.64 48.72 55.16 42.46 47.38 39.05 33.07 33.55 52.31 67.96 46.03 10.68
w/o UDA+ 41.96 52.39 65.27 44.95 47.38 40.49 51.4 39.05 56.01 79.87 51.88 12.65

∆ +1.32 +3.67 +10.11 +2.49 0 +1.44 +18.33 +5.50 +3.70 +11.91 +5.85

CLUDA 43.59 57.60 80.44 40.30 55.95 53.20 67.80 27.26 45.80 67.30 53.92 15.50
CLUDA+ 55.16 57.60 79.29 52.62 65.52 67.89 75.45 33.55 45.36 90.39 62.28 16.91

∆ +11.57 0 -1.15 +12.32 +9.57 +14.69 +7.65 +6.29 -0.44 +23.09 +8.36

ConFGD 54.74 72.12 85.34 44.95 45.00 59.45 79.37 43.73 55.94 81.82 62.25 16.16
ConFGD+ 55.95 77.70 86.60 45.80 51.56 70.03 77.11 45.80 61.76 81.86 65.42 15.25

∆ +1.21 +5.58 +1.26 +0.85 +6.56 +10.58 -2.26 +2.07 +5.82 +0.04 +3.17

Table 9: Results for exiting models added on with LAA module on WISDM Dataset. Up: Mean Accuracy (%), Down: Mean
Macro F1 (%). The results are the mean of the accuracy over 10 sets of random initialization.
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Figure 11: UDA baseline evaluation results on benchmark
datasets

J Ablation Study
We conduct an ablation study of our proposed ConFDG
framework by comparing different ablation models (discard-
ing some parts of the variants). We also evaluate the ab-
lation models on these two benchmark datasets HAR and
WISDM. The ablation models used for the evaluations are
(1) w/o UDA, (2) w/o LFC&LFF , (3) w/o LCL, (4) w/o
LCL&LFC&LFF and (5) w/o Ldomain. Similar to Sec. F,
we randomly initialize each model 10 times and take the
mean values as the results. Table. 10 shows the ablation study
results on HAR and Table. 11 shows the results on WISDM.
We use both Accuracy and Macro-F1 as the evaluation met-
rics. The results prove the effectiveness and accuracy of our
proposed complete ConFGD and ConFGD+.

K Top k Study of Encoder Edge Embedding
vedge

This section elaborates on the experiments of different num-
bers of Top k. In the vedge, there are 10 nodes. Therefore,
10 Top k means using all the edge information for the ag-
gregating, and 5 means only using the top 5 important edge
embeddings into the aggregating and setting the remaining
entries into 0. Therefore, a smaller Top k number means
higher computational efficiency. Table. 12 and Table. 13 are
the evaluation results for the Top k study on the benchmark
dataset HAR and WISDM respectively. Similar to Sec. F,
we randomly initialize each model 10 times and take the
mean values as the results. We also apply both Accuracy and
Macro-F1 for the evaluation.

The results show that when the choice of Top k is changed,
our proposed model still archives very stable and significant
performance. In addition, choosing the top 7 embeddings for
each pair of nodes achieved 3 best performances out of 4
evaluation metrics. In addition, the standard deviation is very
small (HAR: Accuracy: 0.328% of the best average value



(a) TCN (w/o UDA) (b) w/o UDA (c) VRADA (d) CoDATS (e) AdvSKM

(f) CAN (g) CDAN (h) DDC (i) DeepCORAL (j) DSAN

(k) HoMM (l) MMDA (m) CLUDA (n) ConFGD (o) ConFGD+

Figure 12: Embedding t-SNE visualizations of all the baseline models on the benchmark dataset HAR (Anguita et al. 2013). The
classes are differentiated by colors. The “star” shapes are from the source domain and the “round” shapes are from the target
domain

Model 1→2 2→5 13→ 19 15→ 19 18→ 21 19→ 25 20→ 1 23→ 13 24→ 22 25→ 24 Avg. Std.

w/o UDA 82.61 54.45 83.33 96.3 91.94 59.68 94.34 66.00 87.76 89.66 80.61 15.07
w/o LFC&LFF 86.96 78.26 98.15 98.15 90.32 77.42 98.11 90.00 100.00 98.28 91.57 8.49

w/o LCL 86.96 78.26 88.89 96.30 88.71 75.81 94.34 86.00 100.00 96.55 89.18 7.90
w/o LCL&LFC&LFF 86.96 78.26 88.89 96.30 88.71 85.48 98.11 84.00 98.28 94.83 89.98 6.70

w/o Ldomain 78.26 76.09 85.19 96.30 90.32 67.74 90.57 74.00 98.15 98.28 85.49 10.94
w/o PE 76.09 75.81 83.33 94.34 85.48 74.00 90.32 80.00 95.92 98.11 85.34 8.93

ConFGD 91.30 86.96 94.44 98.15 98.15 95.16 98.11 88.00 100 98.28 94.86 4.63
ConFGD+ 91.50 89.13 100 98.15 98.15 100 100 96.00 100 100 96.81 3.87

w/o UDA 83.12 45.32 82.88 97.14 87.64 56.38 94.09 60.29 81.25 88.75 77.69 17.46
w/o LFC&LFF 84.61 76.98 98.59 97.44 90.94 75.02 97.74 89.03 100.00 95.95 90.63 9.10

w/o LCL 82.95 75.93 90.62 94.58 88.36 73.88 94.03 83.89 100.00 96.06 88.03 8.71
w/o LCL&LFC&LFF 84.61 76.88 90.62 95.98 88.35 84.99 97.74 81.49 95.95 94.02 89.06 6.99

w/o Ldomain 75.34 69.03 85.47 94.22 90.94 63.19 90.60 69.02 97.44 98.04 83.33 13.03
w/o PE 76.88 73.88 76.56 94.03 86.41 69.02 90.60 76.77 94.49 97.74 83.64 10.18

ConFGD 91.22 86.18 97.44 97.44 97.44 94.97 98.44 86.40 100 98.91 94.84 5.12
ConFGD+ 91.33 88.35 100 98.59 97.50 95.00 100 95.54 100 100 96.63 4.09

Table 10: Ablation Results on HAR Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1 (%). The results are the mean
of the accuracy over 10 sets of random initialization (Higher is better. The best is in bold and the second best is marked with
underline).

94.58, Macro-F1: 0.18% of the best average value 93.79;
WISDM: Accuracy: 0.513% of the best average value 78.04,
Macro-F1: 3.25% of the best average value 93.96). Thus, our
model offers an option to enhance computational efficiency
without sacrificing accuracy.

L Limitations
This paper has two primary limitations. Firstly, based on
the runtime results of different models, a smaller Top K
significantly reduces execution time. In our evaluations, we
fixed the frequency decomposition components at 5, with
10 nodes each. We opted for 5 frequency decompositions
(filter level is 4db) instead of a larger number because, for
finite-length signals, higher levels of filtering can cause a



Model 2→25 7→2 7→ 12 7→ 26 10→ 25 12→ 19 12→ 7 13→ 2 19→ 2 28→ 20 Avg. Std.

w/o UDA 65.79 63.41 63.64 78.05 68.42 54.55 56.25 51.22 51.22 68.29 62.08 8.68
w/o LFC&LFF 71.05 65.85 59.09 75.61 65.79 54.55 64.58 48.78 78.05 85.37 66.87 11.10

w/o LCL 68.42 78.05 86.36 75.61 71.05 83.33 68.75 43.90 73.71 87.80 73.70 12.57
w/o LCL&LFC&LFF 76.32 75.61 81.82 78.05 71.05 72.73 81.25 46.34 78.05 85.37 74.66 10.83

w/o Ldomain 63.16 78.05 63.64 75.61 71.05 68.18 72.92 51.22 60.98 68.29 67.31 7.90
w/o PE 76.32 63.41 81.82 75.61 52.63 77.27 72.92 48.78 70.73 60.98 68.05 11.11

ConFGD 78.95 73.17 84.09 78.05 78.95 83.30 77.08 70.73 75.61 85.37 78.53 4.50
ConFGD+ 79.55 82.93 87.80 78.05 78.95 83.33 79.17 71.05 78.05 87.85 80.67 5.03

w/o UDA 40.64 48.72 55.16 42.46 47.38 39.05 33.07 33.55 52.31 67.96 46.03 10.68
w/o LFC&LFF 40.59 51.60 39.56 43.85 37.75 45.34 50.22 32.50 59.02 83.95 48.44 14.63

w/o LCL 41.27 60.38 82.85 43.02 41.83 70.03 65.96 26.83 60.42 83.37 57.60 18.90
w/o LCL&LFC&LFF 43.87 61.25 81.92 54.93 40.51 50.07 75.29 35.19 61.76 80.35 58.51 16.64

w/o Ldomain 39.87 68.30 56.07 42.47 40.02 43.45 76.49 30.48 55.83 55.71 50.87 14.20
w/o PE 51.90 48.02 59.71 42.45 30.67 57.23 56.50 30.74 36.90 59.33 47.35 11.48

ConFGD 54.74 70.69 85.34 44.95 55.00 70.50 79.37 43.73 55.94 76.20 63.65 16.16
ConFGD+ 55.95 77.70 86.60 45.80 51.56 70.03 77.11 45.80 61.76 81.86 65.42 15.25

Table 11: Ablation Results on WISDM Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1 (%). The results are the mean
of the accuracy over 10 sets of random initialization (Higher is better. The best is in bold and the second best is marked with
underline).

Num. of Top k 1→2 2→5 13→ 19 15→ 19 18→ 21 19→ 25 20→ 1 23→ 13 24→ 22 25→ 24 Avg.

5 90.52 82.61 98.15 98.15 95.16 94.34 94.34 88.00 100.00 98.28 93.96
7 86.96 86.96 96.30 98.15 98.15 93.20 98.11 88.00 100.00 100.00 94.58

10 91.30 86.96 94.44 98.15 96.77 95.16 98.11 82.00 100.00 100.00 94.29

Avg. 89.59 85.51 96.30 98.15 96.69 94.23 96.85 86.00 100.00 99.43 94.28
Std.dev 2.31 2.51 1.86 0.00 1.50 0.98 2.18 3.46 0 0.99 0.31

5 88.89 82.29 97.37 98.15 95.07 94.03 94.30 86.40 100.00 98.04 93.45
7 84.38 84.61 97.44 97.44 97.44 93.20 98.44 84.90 100.00 100.00 93.79

10 91.22 86.18 92.31 97.44 94.84 94.97 97.74 81.49 100.00 100.00 93.62

Avg. 88.16 84.36 95.71 97.68 95.78 94.07 96.83 84.26 100.00 99.35 93.62
Std.dev 3.48 1.96 2.94 0.41 1.44 0.89 2.22 2.52 0 1.13 0.17

Table 12: Top k study of encoder edge embedding vedge on HAR Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1
(%). The results are the mean of the accuracy over 10 sets of random initialization (Higher is better. The best is in bold).

Num. of Top k 2→25 7→2 7→ 12 7→ 26 10→ 25 12→ 19 12→ 7 13→ 2 19→ 2 28→ 20 Avg.

5 76.32 78.05 84.09 73.17 76.32 75.76 77.08 70.73 75.61 85.37 77.25
7 75.61 80.49 81.82 75.61 78.95 76.32 72.92 68.75 78.05 87.80 77.63

10 78.95 80.49 84.09 78.05 78.95 77.27 77.08 64.58 75.61 85.37 78.04
Avg. 76.96 79.68 83.33 75.61 78.07 76.45 75.69 68.02 76.42 86.18 77.64

Std.dev 1.76 1.41 1.31 2.44 1.52 0.76 2.40 3.14 1.41 1.40 0.40

5 43.87 70.39 82.85 41.06 44.23 55.14 75.29 43.73 61.11 80.35 59.80
7 61.25 72.12 81.92 42.10 44.65 54.23 76.49 65.96 59.02 81.82 63.96

10 54.74 70.39 85.34 44.95 45.00 59.45 79.37 50.22 55.94 76.20 62.16

Avg. 53.29 70.97 83.37 42.70 44.63 56.27 77.05 53.30 58.69 79.46 61.97
Std.dev 8.78 1.00 1.77 2.01 0.39 2.79 2.10 11.43 2.60 2.91 2.08

Table 13: Top k study of encoder edge embedding vedge on WISDM Dataset. Up: Mean Accuracy (%), Down: Mean Macro F1
(%). The results are the mean of the accuracy over 10 sets of random initialization (Higher is better. The best is in bold).

boundary effect. This means the coefficients near the edges
might contain incorrect information, leading to artifacts or
distortions in the reconstructed signal. Additionally, at the

boundaries, the absence of data on one side results in incom-
plete convolution outcomes (Antonino-Daviu et al. 2009). In
our case, with an input length of 128, the highest filter level



that can avoid boundary effects is 4db, which corresponds to
5 decomposition components. Therefore, the DWT boundary
effects are limited to decomposing the input sequence into
more components. The second limitation is, that since the
benchmark datasets are UDA classification tasks, the LAA
module we developed is currently applicable only to classi-
fication tasks as well. For other tasks, such as regression, a
different specific label prompting strategy should be further
designed, which is also part of our future work.


