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Bottleneck: Insufficient and expensive labeled RUL data

Motivation 1: Unexploited time series data
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Motivation 2: Intrinsically-decomposed 
frequency-domain signal

Time domain Frequency domain

Method 1: Masked autoencoder 
reconstruction auxiliary learning

Method 2: Frequency emphasizing mix-up module
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ØDesigned an LSTM temporal projection layer to effectively capture
long-term sequential information in time-series datasets.

ØProposed a learning framework for RUL prediction that includes the
FEMM module, leveraging decomposed frequency-domain
information to enhance feature extraction.

ØIntroduced theMARALmodule, incorporating self-supervised learning
(SSL) to utilize unlabeled data from unrestricted domains,
addressing data scarcity and improving feature extraction and
generalization in RUL prediction.
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Auxiliary Task: Signal Reconstruction
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Figure	1.	RUL	Prediction	Framework
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Figure 2. Masking	and	Tokenize	Strategy

Frequency Emphasizing Mix-up Module (FEMM)

Masked Autoencoder Reconstruction Auxiliary Learning 
(MARAL)

Part (a)
Decomposed the source signal into high 
and low frequency by Discrete Wavelet 
Transform (DWT).
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1. Data Preparation

Table	1.	Basic	Information	of	C-MAPSS	

Table	2.	Evaluation	metrics	of	different	approaches	
for	RUL	estimation	on	C-MAPSS	datasets	

2.	Fully-supervised	Performance
Comparisons	(only	RUL	dataset)

Table	3.	Results	of	ablation	study	on	FD001	

Figure	4.	The	effects	of	the	(a)masking	ratio,	(b)patch	size,	(c)sequence	length,	and	
(d)embedded	dimension	on	the	prognostic	performance	for	the	training	process	on	

FD001.	The	blue	line	is	RMSE and	the	orange	dot	line	is	the	score.	

3. Fully-supervised model  Ablation Study

4.	Results:	SSL	on	Low-data	Settings	Performance	Comparisons	
(Unlabelled RUL	dataset:	FD002	(only	take	the	first	50%),	Cross-domain	dataset:	SleepEEG)

Table	4.	Evaluation	metrics	of	semi-supervised	learning	(SSL)	
with	different	percentage	of	FD001	

Table	5.	SSL	loss	weights	sensitivity	experiments	
results	(RMSE)	with	RUL	unlabelled	

Table	6.	SSL	loss	weights	sensitivity	experiments	
results	(RMSE)	with	cross-domain	unlabelled	

5.	Results:	SSL	on	Low-data	Settings	Weights	
Sensitivity	Experiments

Conclusion
Ø The LSTM temporal projection layer effectively captures long
sequence time-series information. The FEMM module enhances
feature extraction using frequency-domain decomposition.

Ø The MARAL addresses data scarcity and boosts model performance,
applicable to unrestricted domain datasets.

ØOn the C-MAPSS dataset, particularly in FD004, demonstrated our
method’s superiority with a 10.75% RMSE drop, and a 39.69%
score reduction compared to the second-best results. By introducing
unrestricted domain data for auxiliary learning, using just 10%
labeled data, there was an impressive 98.09% score drop and a
70.28% RMSE decline compared to the fully supervised model.


