

Remaining Useful Life Prediction via Frequency Emphasizing Mix-Up and Masked Reconstruction

Haoren Guo¹, Haiyue Zhu², *Member, IEEE*, Jiahui Wang¹, Vadakkepat Prahlad¹, *Senior Member, IEEE*, Weng Khuen Ho¹, Clarence W. de Silva³, Life Fellow, IEEE, and Tong Heng Lee¹

afacturing Technology (SIMTech), Age

Contributions

- >Designed an LSTM temporal projection layer to effectively capture long-term sequential information in time-series datasets.
- >Proposed a learning framework for RUL prediction that includes the FEMM module, leveraging decomposed frequency-domain information to enhance feature extraction.
- >Introduced the MARAL module, incorporating self-supervised learning (SSL) to utilize unlabeled data from unrestricted domains addressing data scarcity and improving feature extraction and generalization in RUL prediction.

Problem Formulation

Fully-supervised Learning Semi-supervised Learning (SSL)

 $\hat{y} = \mathcal{F}_{\Theta}(X|\mathcal{D}^{l})$

 $\hat{y} = \mathcal{F}_{\Theta}(\mathbf{X} | \mathcal{D}^l \cup \mathcal{D}^{ul})$

 $\mathcal{D}^{ul} = \{(X_i) | i = 1, ..., M\}$ $\mathcal{D}^{l} = \{(X_{i}, y_{i}) | i = 1, ..., N\}$ N: Number of RUL sample pairs M: Number of unlabel samples $\mathcal{F}_{\Theta}(\cdot)$: Prediction function

1. Data Preparation

Dataset	Operating conditions	Fault modes	Train size (nr. of engines)	Test size (nr. of engines)
FD001	1	1	100	100
FD002	6	1	260	259
FD003	1	2	100	100
FD004	6	2	248	249

3. Fully-supervised model Ablation Study

Model	LSTM	FEMM	MARAL	RMSE	Score
I				12.05	218.07
п	~			12.61	257.26
Ш		~		11.33	195.88
IV	~	~		12.63	280.84
v			~	11.62	212.62
VI	~		~	11.13	184.57
VIII		~	~	12.08	259.14
IX	~	\checkmark	~	10.79	179.10
* Both F	MSE and S	core are the	lower the bette	ar	

(c) Sequence Length (d) Embedded Dimmin Figure 4. The effects of the (a)masking ratio, (b)patch size, (c)sequence length, and (d)embedded dimension on the prognostic performance for the training process on FDD01. The blue line is RMSE and the orange dat line is the score.

2. Fully-supervised Performance

Comparisons (only RUL dataset)

Method	FD	001	FE	0002	FD	003	FD004		
Method	RMSE	Score	RMSE	Score	RMSE	Score	RMSE	Score	
SVR [22]	20.96	1380	42.00	590000	21.05	1600	45.35	371000	
CNN [22]	18.45	1299	30.29	13600	19.82	1600	29.16	7890	
Deep LSTM [23]	16.14	388	24.49	4450	16.18	852	28.17	5550	
Auto-Encoder [24]	13.58	228	19.59	2650	19.16	1727	22.15	2901	
GCU-Transformer [14]	11.27	-	22.81	-	11.42	-	24.86	-	
RVE [25]	13.42	323.82	14.92	1379.17	12.51	256.36	16.37	1845.99	
MCTAN [26]	11.69	189.04	16.41	446.89	10.72	252.30	17.36	1722.22	
Ours	10.79	179.10	13.03	728.73	11.59	206.56	14.61	1038.54	

Table 2. Evaluation metrics of different approaches for RUL estimation on C-MAPSS datasets

4. Results: SSL on Low-data Settings Performance Comparisons

Percentage (%)	10		20		30		40		50	
Model	RMSE	Score	RMSE	Score	RMSE	Score	RMSE	Score	RMSE	Score
RVE	61.05	82554.37	48.32	17880.00	22.74	2483.60	22.70	2492.11	20.15	1293.3
GCU-Transformer	75.22	148110.54	32.91	2290.16	16.37	377.73	15.85	294.48	13.36	282.28
Ours: FS	57.06	25853.26	34.52	2634.76	20.54	579.91	15.10	287.03	12.88	217.44
Ours: FS+SSL with RUL Data	16.96	492.68	15.25	357.43	13.52	290.78	14.03	263.60	12.49	207.85
Δ	-40.10	-25360.58	-19.27	-2277.33	-7.12	-289.13	-1.07	-23.43	-0.39	-9.59
Ours: FS+SSL with Cross-Domain Data	27.67	1601.68	14.52	273.00	13.64	223.32	13.92	265.90	12.71	207.40
Δ	-29.39	-24251.58	-20.00	-2361.76	-7.00	-356.59	-1.18	-21.13	-0.17	-10.0
Percentage (%)	60		70		80		90		100	
Model	RMSE	Score	RMSE	Score	RMSE	Score	RMSE	Score	RMSE	Score
RVE	20.12	1289.82	16.22	560.34	16.24	581.25	15.37	492.53	15.19	452.22
GCU-Transformer	12.68	225.36	12.16	191.15	11.73	187.70	11.93	222.01	11.40	179.96
Ours: FS	12.13	199.64	11.25	159.12	10.73	169.07	10.35	150.42	10.79	179.10
Ours: FS+SSL with RUL Data	10.83	166.41	10,24	150.90	9.77	129.06	9.99	134.04	10.43	146.20
Δ	-1.3	-33.23	-1.01	-8.22	-0.96	-40.01	-0.36	-16.38	-0.36	-32.90
Ours: FS+SSL with Cross-Domain Data	11.63	180.48	10.50	149.52	10.32	160.33	9,76	144,76	10.36	161.79
Δ	-0.50	-19.16	-0.75	-9.6	-0.41	-8.74	-0.59	-5.66	-0.34	-17.3

with different percentage of FD001

Methodology

Figure 1. RUL Prediction Framework

Frequency Emphasizing Mix-up Module (FEMM) Part (b) Mix-up Frequency

Part (a) Decomposed the source signal into high and low frequency by Discrete Wavelet Transform (DWT).

 $\overline{\mathbf{X}}, \underline{\mathbf{X}} = D_{DWT}(\mathbf{X}) \ \mathbf{X}, \overline{\mathbf{X}}, \underline{\mathbf{X}} \in \mathbb{R}^{P \times J}$ LSTM Temporal Projection Laver $\mathbf{H}/\overline{\mathbf{H}}/\mathbf{H} = T(\mathbf{X}/\overline{\mathbf{X}}/\mathbf{X})$ Positional Encoding $PE_{(z,2d)} = \sin \left(z/10000^{2d/D} \right)$,

 $PE_{(z,2d+1)} = \cos \left(z/10000^{2d/D} \right)$

Part (c) Masking and Tokenize

Part (d) Signal Reconstruction

 $\mathbf{\hat{X}} = FC(TD(\mathbf{\hat{R}})) \in \mathbb{R}^{P \times J}$

Transformer Encode $\mathbf{R}/\overline{\mathbf{R}}/\mathbf{R} = TE(\mathbf{H}/\overline{\mathbf{H}}/\mathbf{H})$ Multi-Head Attention $K^h = \mathbf{H} W^h_k, \ V^h = \mathbf{H} W^h_v, \ Q^h = \mathbf{H} W^h_q$

H: number of heads $W_k^h, W_v^h, W_q^h \in \mathbb{R}^{d \times d_k} h = 1, ..., H$ on of key, value, query in each head

Prediction Head $\hat{y} = MLP(\tilde{\mathbf{R}})$ $AO^{h} = \operatorname{Atten}(Q^{h}, K^{h}, V^{h}) = \operatorname{softmax}\left(\frac{Q^{h}(K^{h})^{T}}{\sqrt{d_{*}}}\right)V$

 $\mathcal{L}_{rul} = \mathbb{E} \left| \sum_{i=1}^{P} ||y_i - \hat{y}_i||_2 \right|$

Representations

 $\tilde{\mathbf{R}} = Concat(\mathbf{R}, \overline{\mathbf{R}}, \mathbf{R})$

Masked Autoencoder Reconstruction Auxiliary Learning (MARAL)

 $MAO = Concat \left(\left\{ AO^{h} \right\}_{h=1}^{H} \right) W^{A}$

Reconstruction Loss Function: Cosine Similarity-based Loss Function

 $\mathcal{L}_{aux} = \frac{1}{B} \sum_{b=0}^{B} \sum_{p=0}^{P} (1 - \frac{\mathbf{x}_{p}^{b} \cdot \hat{\mathbf{x}}_{p}^{b}}{\max\left(\left\|\mathbf{x}_{p}^{b}\right\|_{2} \cdot \left\|\hat{\mathbf{x}}_{p}^{b}\right\|_{2}, \epsilon\right)}$ RUL Labeled Data + Unlabeled Data

RUL Labeled Data $\mathcal{L} = \lambda_1 \mathcal{L}_{rul} + \lambda_2 \mathcal{L}_{au}$

$\mathcal{L} = \lambda_1 \mathcal{L}_{rul}^l + \lambda_2 \mathcal{L}_{aux}^l + \lambda_3 \mathcal{L}_{rul}^{ul} + \lambda_4 \mathcal{L}_{aux}^{ul}$

5. Results: SSL on Low-data Settings Weights Sensitivity Experiments

			F										
λ_3	0	0.1	0.15	0.2	0.25	0.3	λ_1	0	0.002	0.005	0.007	0.01	0.02
10%	1	mean =	$18.92 \ s$	td = 1.4	0		10%	$mean = 37.98 \ std = 6.45$					
0	57.06	60.86	61.00	62.27	58.01	64.50	0	57.06	50.37	58.19	61.77	56.57	60.85
0.05	19.09	17.60	17.62	16.96	18.47	17.90	0.002	30.58	37.87	33.45	37.47	29.15	40.77
0.1	21.43	18.37	18.75	18.08	17.91	18.28	0.005	37.55	28.80	37.57	45.15	45.64	49.90
0.15	23.18	18.51	18.74	18.67	19.03	18.80	0.007	35.71	27.67	31.25	39.55	37.63	42.69
0.2	21.96	18.53	19.37	18.79	18.80	19.30	0.01	32.69	34.19	37.05	43.34	49.76	46.19
20%	1	mean =	$15.87 \ s$	td = 0.3	1		20%	$mean = 19.27 \ std = 4.04$					
0	34.52	36.41	35.53	35.74	37.53	39.63	0	34.52	31.80	37.55	33.36	33.44	38.95
0.05	16.23	15.64	15.65	15.25	15.37	15.68	0.002	23.06	16.64	14.52	16.73	24.14	20.64
0.1	15.70	15.97	15.93	15.93	16.13	16.11	0.005	28.99	22.39	14.93	14.60	19.08	16.42
0.15	16.69	16.19	15.76	15.81	15.62	15.90	0.007	23.26	18.42	14.92	19.41	15.79	22.19
0.2	16.06	15.63	16.17	16.14	15.63	15.92	0.01	26.26	19.39	14.86	17.28	16.33	22.39
λ_1 and λ_2	λ_1 and λ_2 are fixed to be 1 and 1.05						λ_1 and λ_2	are fixed	to be 1 a	nd 1.05			

Table 5. SSL loss weights sensitivity experi results (RMSE) with RUL unlabelled

Table 6. SSL loss weights sensitivity experimen results (RMSE) with cross-domain unlabelled

Conclusion

- > The LSTM temporal projection layer effectively captures long sequence time-series information. The FEMM module enhances
- feature extraction using **frequency-domain decomposition**. ≻ The MARAL addresses data scarcity and boosts model performance, applicable to unrestricted domain datasets
- > On the C-MAPSS dataset, particularly in FD004, demonstrated our method's superiority with a 10.75% RMSE drop, and a 39.69% score reduction compared to the second-best results. By introducing unrestricted domain data for auxiliary learning, using just 10% labeled data, there was an impressive 98.09% score drop and a 70.28% RMSE decline compared to the fully supervised model.